import gradio as gr from transformers import pipeline video_cls = pipeline(model="mohamedsaeed823/VideoMAEF-finetuned-ARSL-diverse-dataset") phrase_map = { 'Alhamdulillah': "الحمد لله", 'Good bye': "مع السلامة", 'Good evening': "مساء الخير", 'Good morning': "صباح الخير", 'How are you': "ايه الاخبار", 'I am pleased to meet you': "فرصة سعيدة", 'I am fine': "انا كويس", 'I am sorry': "انا اسف", 'Not bad': "مش وحش ", 'Salam aleikum': "السلام عليكم", 'Sorry (Excuse me)': "لو سمحت", 'Thanks': "شكرا" } def classify_video(video_path): try: result=video_cls(video_path,top_k=3,frame_sampling_rate=6) # try to sample a frame every 6 seconds for better video understanding if the video is long enough except Exception as e: result=video_cls(video_path,top_k=3,frame_sampling_rate=3) # if the video is not long enough sample every 3 seconds # Extract the top 3 label and their scores from the classification results top_label = [phrase_map[result[0]['label']], phrase_map[result[1]['label']], phrase_map[result[2]['label']]] top_label_confidence = [result[0]['score'], result[1]['score'], result[2]['score']] return dict(zip(top_label, top_label_confidence)) demo = gr.Interface(fn=classify_video, inputs=gr.Video(sources=["upload"]), outputs=gr.Label(num_top_classes=3)) if __name__ == "__main__": demo.launch()