Spaces:
Running
Running
File size: 1,751 Bytes
03300b3 4faa311 50f7379 4faa311 50f7379 ee17529 3181180 ee17529 54c5e53 ee17529 54c5e53 ee17529 54c5e53 50f7379 4f89650 af347f8 ee17529 54c5e53 4f89650 54c5e53 4f89650 54c5e53 ee17529 4f89650 ee17529 54c5e53 ee17529 4f89650 54c5e53 ee17529 54c5e53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
title: README
emoji: 📚
colorFrom: green
colorTo: indigo
sdk: static
pinned: false
---
# MLX Community
A community org for model weights compatible with [mlx-examples](https://github.com/ml-explore/mlx-examples) powered by [MLX](https://github.com/ml-explore/mlx).
These are pre-converted weights and ready to be used in the example scripts.
# Quick start for LLMs
Install `mlx-lm`:
```
pip install mlx-lm
```
You can use `mlx-lm` from the command line. For example:
```
mlx_lm.generate --model mlx-community/Mistral-7B-Instruct-v0.3-4bit --prompt "hello"
```
This will download a Mistral 7B model from the Hugging Face Hub and generate
text using the given prompt.
For a full list of options run:
```
mlx_lm.generate --help
```
To quantize a model from the command line run:
```
mlx_lm.convert --hf-path mistralai/Mistral-7B-Instruct-v0.3 -q
```
For more options run:
```
mlx_lm.convert --help
```
You can upload new models to Hugging Face by specifying `--upload-repo` to
`convert`. For example, to upload a quantized Mistral-7B model to the
[MLX Hugging Face community](https://huggingface.co/mlx-community) you can do:
```
mlx_lm.convert \
--hf-path mistralai/Mistral-7B-Instruct-v0.3 \
-q \
--upload-repo mlx-community/my-4bit-mistral
```
For more details on the API checkout the full [README](https://github.com/ml-explore/mlx-examples/tree/main/llms)
### Other Examples:
For more examples, visit the [MLX Examples](https://github.com/ml-explore/mlx-examples) repo. The repo includes examples of:
- Parameter efficient fine tuning with LoRA
- Speech recognition with Whisper
- Image generation with Stable Diffusion
and many other examples of different machine learning applications and algorithms. |