Spaces:
Build error
Build error
File size: 10,647 Bytes
390b2d8 70303d6 154538c 91c8e56 154538c 70303d6 f3c6abd 6b2498f 70303d6 837b4d7 c7f7675 f3c6abd efad059 ba0e651 efad059 70303d6 f3c6abd efad059 154538c 5091b3f 154538c f3c6abd 70303d6 36f8ff0 3522491 efad059 f3c6abd af1593d 746bea5 af1593d f3c6abd 70303d6 efad059 f3c6abd efad059 717cbd4 70303d6 456234e efad059 5091b3f 5696d33 5091b3f 456234e efad059 e3e3a86 f08e0a4 497c76e 70303d6 efad059 f3c6abd ba0e651 70303d6 36f8ff0 837b4d7 ba0e651 efad059 70303d6 f3c6abd 70303d6 456234e 65a0b31 70303d6 719360a 759c1e9 70303d6 efad059 f3c6abd 837b4d7 6b2498f 70303d6 65a0b31 70303d6 456234e 65a0b31 f3c6abd 607b0b8 ea51917 f3c6abd 70303d6 efad059 f3c6abd 70303d6 efad059 33e0532 efad059 f3c6abd efad059 837b4d7 717cbd4 5091b3f 5696d33 5091b3f bf84d89 f3c6abd efad059 f3c6abd efad059 f3c6abd af1593d 746bea5 af1593d f3c6abd efad059 d12268b efad059 83ade71 d12268b f3c6abd efad059 f3c6abd 70303d6 f3c6abd 60e6fe2 f3c6abd efad059 7b2b08e ba0e651 abf6849 ba0e651 efad059 ba0e651 efad059 ba0e651 efad059 f3c6abd 3522491 efad059 f3c6abd efad059 f3c6abd efad059 f3c6abd 70303d6 f3c6abd 6eafe13 f3c6abd 7b2b08e d0ba71a 68a0312 6eafe13 497c76e bf84d89 5091b3f 5696d33 f3c6abd 3522491 f3c6abd efad059 f3c6abd efad059 ba0e651 efad059 7b2b08e f3c6abd ba0e651 efad059 717cbd4 f3c6abd 497c76e bf84d89 5696d33 f3c6abd efad059 f3c6abd 497c76e f3c6abd 70303d6 390b2d8 70d3e10 efad059 7b2b08e 70d3e10 6eafe13 efad059 baa6b34 6eafe13 baa6b34 6eafe13 efad059 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
import streamlit.components.v1 as components
<<<<<<< HEAD
=======
import networkx as nx
import matplotlib.pyplot as plt
from pyvis.network import Network
>>>>>>> 91c8e568c30c6d6761629f102cbb617239e13d26
import rebel
import wikipedia
from utils import clip_text
from datetime import datetime as dt
import os
MAX_TOPICS = 3
wiki_state_variables = {
'has_run_wiki': False,
'wiki_suggestions': [],
'wiki_text': [],
'nodes': [],
"topics": [],
"html_wiki": ""
}
free_text_state_variables = {
'has_run_free': False,
"html_free": ""
<<<<<<< HEAD
=======
>>>>>>> 91c8e568c30c6d6761629f102cbb617239e13d26
}
BUTTON_COLUMS = 4
def wiki_init_state_variables():
for k in free_text_state_variables.keys():
if k in st.session_state:
del st.session_state[k]
for k, v in wiki_state_variables.items():
if k not in st.session_state:
st.session_state[k] = v
def wiki_generate_graph():
st.session_state["GRAPH_FILENAME"] = str(
dt.now().timestamp()*1000) + ".html"
if 'wiki_text' not in st.session_state:
return
if len(st.session_state['wiki_text']) == 0:
st.error("please enter a topic and select a wiki page first")
return
with st.spinner(text="Generating graph..."):
texts = st.session_state['wiki_text']
st.session_state['nodes'] = []
nodes = rebel.generate_knowledge_graph(
texts, st.session_state["GRAPH_FILENAME"])
HtmlFile = open(
st.session_state["GRAPH_FILENAME"], 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.session_state["html_wiki"] = source_code
os.remove(st.session_state["GRAPH_FILENAME"])
for n in nodes:
n = n.lower()
if n not in st.session_state['topics']:
possible_topics = wikipedia.search(n, results=2)
st.session_state['nodes'].extend(possible_topics)
st.session_state['nodes'] = list(set(st.session_state['nodes']))
st.session_state['has_run_wiki'] = True
st.success('Done!')
def wiki_show_suggestion():
st.session_state['wiki_suggestions'] = []
with st.spinner(text="fetching wiki topics..."):
if st.session_state['input_method'] == "wikipedia":
text = st.session_state.text
if (text is not None) and (text != ""):
subjects = text.split(",")[:MAX_TOPICS]
for subj in subjects:
st.session_state['wiki_suggestions'] += wikipedia.search(
subj, results=3)
def wiki_show_text(page_title):
with st.spinner(text="fetching wiki page..."):
try:
page = wikipedia.page(title=page_title, auto_suggest=False)
st.session_state['wiki_text'].append(clip_text(page.summary))
st.session_state['topics'].append(page_title.lower())
st.session_state['wiki_suggestions'].remove(page_title)
except wikipedia.DisambiguationError as e:
with st.spinner(text="Woops, ambigious term, recalculating options..."):
st.session_state['wiki_suggestions'].remove(page_title)
temp = st.session_state['wiki_suggestions'] + e.options[:3]
st.session_state['wiki_suggestions'] = list(set(temp))
except wikipedia.WikipediaException:
st.session_state['wiki_suggestions'].remove(page_title)
def wiki_add_text(term):
if len(st.session_state['wiki_text']) > MAX_TOPICS:
return
try:
page = wikipedia.page(title=term, auto_suggest=False)
extra_text = clip_text(page.summary)
st.session_state['wiki_text'].append(extra_text)
st.session_state['topics'].append(term.lower())
st.session_state['nodes'].remove(term)
except wikipedia.DisambiguationError as e:
with st.spinner(text="Woops, ambigious term, recalculating options..."):
st.session_state['nodes'].remove(term)
temp = st.session_state['nodes'] + e.options[:3]
st.session_state['nodes'] = list(set(temp))
except wikipedia.WikipediaException as e:
st.session_state['nodes'].remove(term)
def wiki_reset_session():
for k in wiki_state_variables:
del st.session_state[k]
def free_reset_session():
for k in free_text_state_variables:
del st.session_state[k]
def free_text_generate():
st.session_state["GRAPH_FILENAME"] = str(
dt.now().timestamp()*1000) + ".html"
text = st.session_state['free_text'][0:100]
rebel.generate_knowledge_graph([text], st.session_state["GRAPH_FILENAME"])
HtmlFile = open(st.session_state["GRAPH_FILENAME"], 'r', encoding='utf-8')
source_code = HtmlFile.read()
st.session_state["html_free"] = source_code
os.remove(st.session_state["GRAPH_FILENAME"])
st.session_state['has_run_free'] = True
def free_text_layout():
st.text_area("Free text", key="free_text", height=5,
value="Tardigrades, known colloquially as water bears or moss piglets, are a phylum of eight-legged segmented micro-animals.")
st.button("Generate", on_click=free_text_generate,
key="free_text_generate")
def free_test_init_state_variables():
for k in wiki_state_variables.keys():
if k in st.session_state:
del st.session_state[k]
for k, v in free_text_state_variables.items():
if k not in st.session_state:
st.session_state[k] = v
st.title('RE:Belle')
st.markdown(
"""
### Building Beautiful Knowledge Graphs With REBEL
""")
st.selectbox(
'input method',
('wikipedia', 'free text'), key="input_method")
def show_wiki_hub_page():
st.sidebar.button("Reset", on_click=wiki_reset_session, key="reset_key")
st.sidebar.markdown(
"""
## How To Create a Graph:
- Enter wikipedia search terms, separated by comma's
- Choose one or more of the suggested topics (max 3)
- Click generate!
"""
)
cols = st.columns([8, 1])
with cols[0]:
st.text_input("wikipedia search term", on_change=wiki_show_suggestion,
key="text", value="graphs, are, awesome")
with cols[1]:
st.text('')
st.text('')
st.button("Search", on_click=wiki_show_suggestion,
key="show_suggestion_key")
if len(st.session_state['wiki_suggestions']) != 0:
num_buttons = len(st.session_state['wiki_suggestions'])
num_cols = num_buttons if 0 < num_buttons < BUTTON_COLUMS else BUTTON_COLUMS
columns = st.columns([1] * num_cols)
for q in range(1 + num_buttons//num_cols):
for i, (c, s) in enumerate(zip(columns, st.session_state['wiki_suggestions'][q*num_cols: (q+1)*num_cols])):
with c:
st.button(s, on_click=wiki_show_text, args=(
s,), key=str(i)+s+"wiki_suggestion")
if len(st.session_state['wiki_text']) != 0:
for i, t in enumerate(st.session_state['wiki_text']):
new_expander = st.expander(label=t[:30] + "...", expanded=(i == 0))
with new_expander:
st.markdown(t)
if len(st.session_state['wiki_text']) > 0:
st.button("Generate", on_click=wiki_generate_graph, key="gen_graph")
st.sidebar.markdown(
"""
## How to expand the graph
- Click a button below the graph to expand that node
(Only nodes that have wiki pages will be expanded)
- Hit the Generate button again to expand your graph!
"""
)
if st.session_state['has_run_wiki']:
components.html(st.session_state["html_wiki"], width=720, height=600)
num_buttons = len(st.session_state["nodes"])
num_cols = num_buttons if 0 < num_buttons < BUTTON_COLUMS else BUTTON_COLUMS
columns = st.columns([1] * num_cols + [1])
for q in range(1 + num_buttons//num_cols):
for i, (c, s) in enumerate(zip(columns, st.session_state["nodes"][q*num_cols: (q+1)*num_cols])):
with c:
st.button(s, on_click=wiki_add_text,
args=(s,), key=str(i)+s)
def show_free_text_hub_page():
st.sidebar.button("Reset", on_click=free_reset_session,
key="free_reset_key")
st.sidebar.markdown(
"""
## How To Create a Graph:
- Enter a text you'd like to see as a graph.
- Click generate!
"""
)
free_text_layout()
if st.session_state['has_run_free']:
components.html(st.session_state["html_free"], width=720, height=600)
if st.session_state['input_method'] == "wikipedia":
wiki_init_state_variables()
show_wiki_hub_page()
else:
free_test_init_state_variables()
show_free_text_hub_page()
st.sidebar.markdown(
"""
## What This Is And Why We Built it
This space shows how a transformer network can be used to convert *human* text into a computer-queryable format: a **knowledge graph**. Knowledge graphs are graphs where each node (or *vertex* if you're fancy) represent a concept/person/thing and each edge the link between those concepts. If you'd like to know more, you can read [this blogpost](https://www.ml6.eu/knowhow/knowledge-graphs-an-introduction-and-business-applications).
Knowledge graphs aren't just cool to look at, they are an extremely versatile way of storing data, and are used in machine learning to perform tasks like fraud detection. You can read more about the applications of knowledge graphs in ML in [this blogpost](https://blog.ml6.eu/how-are-knowledge-graphs-and-machine-learning-related-ff6f5c1760b5).
There is one problem though: building knowledge graphs from scratch is a time-consuming and tedious task, so it would be a lot easier if we could leverage machine learning to **create** them from existing texts. This demo shows how a model named **REBEL** has been trained to do just that: it reads summaries from Wikipedia (or any other text you input), and generates a graph containing the information it distills from the text.
"""
)
st.sidebar.markdown(
"""
*Credits for the REBEL model go out to Pere-Lluís Huguet Cabot and Roberto Navigli.
The code can be found [here](https://github.com/Babelscape/rebel),
and the original paper [here](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf)*
"""
)
|