Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/bert-tiny-finetuned-sms-spam-detection") | |
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/bert-tiny-finetuned-sms-spam-detection") | |
def classify_spam(text): | |
encoded_text = tokenizer(text, truncation=True, padding='max_length', max_length=512, return_tensors='pt') | |
predictions = model(**encoded_text) | |
predicted_probabilities = predictions.logits.softmax(dim=1) | |
predicted_class = "Spam" if predicted_probabilities[0, 1] > 0.5 else "Not Spam" | |
return predicted_class | |
def main(): | |
st.title("SMS Spam Classification App") | |
st.text("Made by Moneeb Ahmad with Lil Love ❤️ ") | |
text_input = st.text_area("Enter SMS text for classification:", "") | |
if st.button("Classify"): | |
if text_input: | |
result = classify_spam(text_input) | |
st.subheader("Predicted Class:") | |
st.write(result) | |
else: | |
st.warning("Please enter some text for classification.") | |
if __name__ == "__main__": | |
main() |