Pringled's picture
Updated app with code for deduplication
892ceeb
raw
history blame
9.5 kB
import gradio as gr
from datasets import load_dataset
import numpy as np
from model2vec import StaticModel
from reach import Reach
from difflib import ndiff
def deduplicate(embedding_matrix: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[np.ndarray, dict[int, int]]:
"""
Deduplicate embeddings and return the deduplicated indices and a mapping of removed indices to their corresponding original indices.
"""
reach = Reach(vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))])
# Use a set for deduplicated indices and keep track of duplicates
deduplicated_indices = set(range(len(embedding_matrix))) # Start with all indices as deduplicated
duplicate_to_original_mapping = {}
results = reach.nearest_neighbor_threshold(
embedding_matrix,
threshold=threshold,
batch_size=batch_size,
show_progressbar=True
)
# Process duplicates
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates")):
if i not in deduplicated_indices:
continue # Skip already marked duplicates
# Similar items are returned as (index, score), we are only interested in the index
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i]
# Mark similar documents as duplicates and map them to the original
for sim_idx in similar_indices:
if sim_idx in deduplicated_indices:
deduplicated_indices.remove(sim_idx)
duplicate_to_original_mapping[sim_idx] = i # Map duplicate to original
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping
def deduplicate_across_datasets(embedding_matrix_1: np.ndarray, embedding_matrix_2: np.ndarray, threshold: float, batch_size: int = 1024, progress=gr.Progress(track_tqdm=True)) -> tuple[list[int], dict[int, int]]:
"""
Deduplicate embeddings across two datasets and return the indices of duplicates between them.
"""
reach = Reach(vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))])
# Keep track of duplicates in the second dataset
duplicate_indices_in_test = []
duplicate_to_original_mapping = {}
# Find nearest neighbors from the test set in the train set
results = reach.nearest_neighbor_threshold(
embedding_matrix_2,
threshold=threshold,
batch_size=batch_size,
show_progressbar=True
)
# Process duplicates
for i, similar_items in enumerate(progress.tqdm(results, desc="Processing duplicates across datasets")):
# Similar items are returned as (index, score), we are only interested in the index
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] # Keep those above the threshold
# If we find a similar item in the train set, mark it as a duplicate
if similar_indices:
duplicate_indices_in_test.append(i)
duplicate_to_original_mapping[i] = similar_indices[0] # Map duplicate in test to original in train
return duplicate_indices_in_test, duplicate_to_original_mapping
def display_word_differences(x: str, y: str) -> str:
diff = ndiff(x.split(), y.split())
return " ".join([word for word in diff if word.startswith(('+', '-'))])
def perform_deduplication(
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold,
progress=gr.Progress(track_tqdm=True)
):
# Convert threshold to float
threshold = float(threshold)
if deduplication_type == "Single dataset":
# Load the dataset
ds = load_dataset(dataset1_name, split=dataset1_split)
# Extract texts
texts = [example[dataset1_text_column] for example in ds]
# Compute embeddings
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
embedding_matrix = model.encode(texts, show_progressbar=True)
# Deduplicate
deduplicated_indices, duplicate_to_original_mapping = deduplicate(embedding_matrix, threshold, progress=progress)
# Prepare the results
num_duplicates = len(duplicate_to_original_mapping)
num_total = len(texts)
num_deduplicated = len(deduplicated_indices)
result_text = f"**Total documents:** {num_total}\n"
result_text += f"**Number of duplicates found:** {num_duplicates}\n"
result_text += f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n"
# Show deduplicated examples
result_text += "**Examples of duplicates found:**\n\n"
num_examples = min(5, num_duplicates)
examples_shown = 0
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]:
original_text = texts[original_idx]
duplicate_text = texts[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text:**\n{original_text}\n\n"
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
examples_shown += 1
return result_text
elif deduplication_type == "Cross-dataset":
# Load datasets
ds1 = load_dataset(dataset1_name, split=dataset1_split)
ds2 = load_dataset(dataset2_name, split=dataset2_split)
# Extract texts
texts1 = [example[dataset1_text_column] for example in ds1]
texts2 = [example[dataset2_text_column] for example in ds2]
# Compute embeddings
model = StaticModel.from_pretrained("minishlab/M2V_base_output")
embedding_matrix1 = model.encode(texts1, show_progressbar=True)
embedding_matrix2 = model.encode(texts2, show_progressbar=True)
# Deduplicate across datasets
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets(embedding_matrix1, embedding_matrix2, threshold, progress=progress)
num_duplicates = len(duplicate_indices_in_ds2)
num_total_ds2 = len(texts2)
num_unique_ds2 = num_total_ds2 - num_duplicates
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n"
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n"
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n"
# Show deduplicated examples
result_text += "**Examples of duplicates found in Dataset 2:**\n\n"
num_examples = min(5, num_duplicates)
examples_shown = 0
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]:
original_idx = duplicate_to_original_mapping[duplicate_idx]
original_text = texts1[original_idx]
duplicate_text = texts2[duplicate_idx]
differences = display_word_differences(original_text, duplicate_text)
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n"
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n"
result_text += f"**Differences:**\n{differences}\n"
result_text += "-" * 50 + "\n\n"
examples_shown += 1
return result_text
with gr.Blocks() as demo:
gr.Markdown("# Semantic Deduplication")
deduplication_type = gr.Radio(choices=["Single dataset", "Cross-dataset"], label="Deduplication Type", value="Single dataset")
with gr.Tab("Dataset 1"):
with gr.Row():
dataset1_name = gr.Textbox(value="ag_news", label="Dataset Name")
dataset1_split = gr.Textbox(value="train", label="Split")
dataset1_text_column = gr.Textbox(value="text", label="Text Column Name")
dataset2_tab = gr.Tab("Dataset 2", visible=False)
with dataset2_tab:
with gr.Row():
dataset2_name = gr.Textbox(value="ag_news", label="Dataset Name")
dataset2_split = gr.Textbox(value="test", label="Split")
dataset2_text_column = gr.Textbox(value="text", label="Text Column Name")
threshold = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, label="Similarity Threshold")
compute_button = gr.Button("Compute")
output = gr.Markdown()
# Function to update the visibility of dataset2_tab
def update_visibility(deduplication_type):
if deduplication_type == "Cross-dataset":
return {dataset2_tab: gr.update(visible=True)}
else:
return {dataset2_tab: gr.update(visible=False)}
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=[dataset2_tab])
compute_button.click(
fn=perform_deduplication,
inputs=[
deduplication_type,
dataset1_name,
dataset1_split,
dataset1_text_column,
dataset2_name,
dataset2_split,
dataset2_text_column,
threshold
],
outputs=output
)
demo.launch()