Spaces:
Sleeping
Sleeping
import gradio as gr | |
from datasets import load_dataset | |
import numpy as np | |
from model2vec import StaticModel | |
from reach import Reach | |
from difflib import ndiff | |
# Load the model at startup | |
model = StaticModel.from_pretrained("minishlab/M2V_base_output") | |
# Default dataset parameters | |
default_dataset1_name = "sst2" | |
default_dataset1_split = "train" | |
default_dataset2_name = "sst2" | |
default_dataset2_split = "validation" | |
default_text_column = "sentence" | |
default_threshold = 0.9 | |
# Load the default datasets at startup | |
ds_default1 = load_dataset(default_dataset1_name, split=default_dataset1_split) | |
ds_default2 = load_dataset(default_dataset2_name, split=default_dataset2_split) | |
from tqdm import tqdm as original_tqdm | |
# Patch tqdm to use Gradio's progress bar | |
def patch_tqdm_for_gradio(progress): | |
class GradioTqdm(original_tqdm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.progress = progress | |
self.total_batches = kwargs.get('total', len(args[0])) if len(args) > 0 else 1 | |
def update(self, n=1): | |
super().update(n) | |
self.progress(self.n / self.total_batches) | |
return GradioTqdm | |
# Function to patch the original encode function with our Gradio tqdm | |
def original_encode_with_tqdm(original_encode_func, patched_tqdm): | |
def new_encode(*args, **kwargs): | |
# Replace tqdm with our patched version | |
original_tqdm_backup = original_tqdm | |
try: | |
# Patch the `tqdm` within encode | |
globals()['tqdm'] = patched_tqdm | |
return original_encode_func(*args, **kwargs) | |
finally: | |
# Restore original tqdm after calling encode | |
globals()['tqdm'] = original_tqdm_backup | |
return new_encode | |
def batch_iterable(iterable, batch_size): | |
"""Helper function to create batches from an iterable.""" | |
for i in range(0, len(iterable), batch_size): | |
yield iterable[i:i + batch_size] | |
def compute_embeddings(texts, batch_size, progress, desc="Computing embeddings"): | |
embeddings = [] | |
total_batches = (len(texts) + batch_size - 1) // batch_size | |
for i, batch_texts in enumerate(batch_iterable(texts, batch_size)): | |
batch_embeddings = model.encode(batch_texts, show_progressbar=False) | |
embeddings.append(batch_embeddings) | |
progress((i + 1) / total_batches, desc=desc) | |
return np.concatenate(embeddings, axis=0) | |
def deduplicate( | |
embedding_matrix: np.ndarray, | |
threshold: float, | |
batch_size: int = 1024, | |
progress=None | |
) -> tuple[np.ndarray, dict[int, int]]: | |
# Building the index | |
progress(0, desc="Building search index...") | |
reach = Reach( | |
vectors=embedding_matrix, items=[str(i) for i in range(len(embedding_matrix))] | |
) | |
deduplicated_indices = set(range(len(embedding_matrix))) | |
duplicate_to_original_mapping = {} | |
# Finding nearest neighbors | |
progress(0, desc="Finding nearest neighbors...") | |
results = reach.nearest_neighbor_threshold( | |
embedding_matrix, | |
threshold=threshold, | |
batch_size=batch_size, | |
show_progressbar=False, # Disable internal progress bar | |
) | |
# Processing duplicates with a progress bar | |
total_items = len(embedding_matrix) | |
for i, similar_items in enumerate( | |
progress.tqdm(results, desc="Processing duplicates", total=total_items) | |
): | |
if i not in deduplicated_indices: | |
continue | |
similar_indices = [int(item[0]) for item in similar_items if int(item[0]) != i] | |
for sim_idx in similar_indices: | |
if sim_idx in deduplicated_indices: | |
deduplicated_indices.remove(sim_idx) | |
duplicate_to_original_mapping[sim_idx] = i | |
return np.array(list(deduplicated_indices)), duplicate_to_original_mapping | |
def display_word_differences(x: str, y: str) -> str: | |
diff = ndiff(x.split(), y.split()) | |
return " ".join([word for word in diff if word.startswith(("+", "-"))]) | |
def perform_deduplication( | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name="", | |
dataset2_split="", | |
dataset2_text_column="", | |
threshold=default_threshold, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
try: | |
# Convert threshold to float | |
threshold = float(threshold) | |
# Initialize status message | |
status = "" | |
if deduplication_type == "Single dataset": | |
# Load Dataset 1 | |
status = "Loading Dataset 1..." | |
yield status, "" | |
if ( | |
dataset1_name == default_dataset1_name | |
and dataset1_split == default_dataset1_split | |
): | |
ds = ds_default1 | |
else: | |
ds = load_dataset(dataset1_name, split=dataset1_split) | |
# Extract texts | |
status = "Extracting texts from Dataset 1..." | |
yield status, "" | |
texts = [example[dataset1_text_column] for example in ds] | |
patched_tqdm = patch_tqdm_for_gradio(progress) | |
model.encode = original_encode_with_tqdm(model.encode, patched_tqdm) | |
# Compute embeddings | |
status = "Computing embeddings for Dataset 1..." | |
yield status, "" | |
embedding_matrix = model.encode(texts, show_progressbar=True) | |
# embedding_matrix = compute_embeddings( | |
# texts, | |
# batch_size=64, | |
# progress=progress, | |
# desc="Computing embeddings for Dataset 1", | |
# ) | |
# Deduplicate | |
status = "Deduplicating embeddings..." | |
yield status, "" | |
deduplicated_indices, duplicate_to_original_mapping = deduplicate( | |
embedding_matrix, threshold, progress=progress | |
) | |
# Prepare the results | |
num_duplicates = len(duplicate_to_original_mapping) | |
num_total = len(texts) | |
num_deduplicated = len(deduplicated_indices) | |
result_text = f"**Total documents:** {num_total}\n" | |
result_text += f"**Number of duplicates found:** {num_duplicates}\n" | |
result_text += ( | |
f"**Number of unique documents after deduplication:** {num_deduplicated}\n\n" | |
) | |
# Show deduplicated examples | |
if num_duplicates > 0: | |
result_text += "**Examples of duplicates found:**\n\n" | |
num_examples = min(5, num_duplicates) | |
for duplicate_idx, original_idx in list(duplicate_to_original_mapping.items())[:num_examples]: | |
original_text = texts[original_idx] | |
duplicate_text = texts[duplicate_idx] | |
differences = display_word_differences(original_text, duplicate_text) | |
result_text += f"**Original text:**\n{original_text}\n\n" | |
result_text += f"**Duplicate text:**\n{duplicate_text}\n\n" | |
result_text += f"**Differences:**\n{differences}\n" | |
result_text += "-" * 50 + "\n\n" | |
else: | |
result_text += "No duplicates found." | |
# Final status | |
status = "Deduplication completed." | |
yield status, result_text | |
elif deduplication_type == "Cross-dataset": | |
# Similar code for cross-dataset deduplication | |
# Load Dataset 1 | |
status = "Loading Dataset 1..." | |
yield status, "" | |
if ( | |
dataset1_name == default_dataset1_name | |
and dataset1_split == default_dataset1_split | |
): | |
ds1 = ds_default1 | |
else: | |
ds1 = load_dataset(dataset1_name, split=dataset1_split) | |
# Load Dataset 2 | |
status = "Loading Dataset 2..." | |
yield status, "" | |
if ( | |
dataset2_name == default_dataset2_name | |
and dataset2_split == default_dataset2_split | |
): | |
ds2 = ds_default2 | |
else: | |
ds2 = load_dataset(dataset2_name, split=dataset2_split) | |
# Extract texts from Dataset 1 | |
status = "Extracting texts from Dataset 1..." | |
yield status, "" | |
texts1 = [example[dataset1_text_column] for example in ds1] | |
# Extract texts from Dataset 2 | |
status = "Extracting texts from Dataset 2..." | |
yield status, "" | |
texts2 = [example[dataset2_text_column] for example in ds2] | |
# Compute embeddings for Dataset 1 | |
status = "Computing embeddings for Dataset 1..." | |
yield status, "" | |
embedding_matrix1 = compute_embeddings( | |
texts1, | |
batch_size=64, | |
progress=progress, | |
desc="Computing embeddings for Dataset 1", | |
) | |
# Compute embeddings for Dataset 2 | |
status = "Computing embeddings for Dataset 2..." | |
yield status, "" | |
embedding_matrix2 = compute_embeddings( | |
texts2, | |
batch_size=64, | |
progress=progress, | |
desc="Computing embeddings for Dataset 2", | |
) | |
# Deduplicate across datasets | |
status = "Deduplicating embeddings across datasets..." | |
yield status, "" | |
duplicate_indices_in_ds2, duplicate_to_original_mapping = deduplicate_across_datasets( | |
embedding_matrix1, embedding_matrix2, threshold, progress=progress | |
) | |
num_duplicates = len(duplicate_indices_in_ds2) | |
num_total_ds2 = len(texts2) | |
num_unique_ds2 = num_total_ds2 - num_duplicates | |
result_text = f"**Total documents in {dataset2_name}/{dataset2_split}:** {num_total_ds2}\n" | |
result_text += f"**Number of duplicates found in {dataset2_name}/{dataset2_split}:** {num_duplicates}\n" | |
result_text += f"**Number of unique documents in {dataset2_name}/{dataset2_split} after deduplication:** {num_unique_ds2}\n\n" | |
# Show deduplicated examples | |
if num_duplicates > 0: | |
result_text += "**Examples of duplicates found in Dataset 2:**\n\n" | |
num_examples = min(5, num_duplicates) | |
for duplicate_idx in duplicate_indices_in_ds2[:num_examples]: | |
original_idx = duplicate_to_original_mapping[duplicate_idx] | |
original_text = texts1[original_idx] | |
duplicate_text = texts2[duplicate_idx] | |
differences = display_word_differences(original_text, duplicate_text) | |
result_text += f"**Original text (Dataset 1):**\n{original_text}\n\n" | |
result_text += f"**Duplicate text (Dataset 2):**\n{duplicate_text}\n\n" | |
result_text += f"**Differences:**\n{differences}\n" | |
result_text += "-" * 50 + "\n\n" | |
else: | |
result_text += "No duplicates found." | |
# Final status | |
status = "Deduplication completed." | |
yield status, result_text | |
except Exception as e: | |
yield f"An error occurred: {e}", "" | |
raise e | |
def deduplicate_across_datasets( | |
embedding_matrix_1: np.ndarray, | |
embedding_matrix_2: np.ndarray, | |
threshold: float, | |
batch_size: int = 1024, | |
progress=None | |
) -> tuple[list[int], dict[int, int]]: | |
# Building the index from Dataset 1 | |
progress(0, desc="Building search index from Dataset 1...") | |
reach = Reach( | |
vectors=embedding_matrix_1, items=[str(i) for i in range(len(embedding_matrix_1))] | |
) | |
duplicate_indices_in_test = [] | |
duplicate_to_original_mapping = {} | |
# Finding nearest neighbors between datasets | |
progress(0, desc="Finding nearest neighbors between datasets...") | |
results = reach.nearest_neighbor_threshold( | |
embedding_matrix_2, | |
threshold=threshold, | |
batch_size=batch_size, | |
show_progressbar=False, # Disable internal progress bar | |
) | |
total_items = len(embedding_matrix_2) | |
# Processing duplicates with a progress bar | |
for i, similar_items in enumerate( | |
progress.tqdm(results, desc="Processing duplicates across datasets", total=total_items) | |
): | |
similar_indices = [int(item[0]) for item in similar_items if item[1] >= threshold] | |
if similar_indices: | |
duplicate_indices_in_test.append(i) | |
duplicate_to_original_mapping[i] = similar_indices[0] | |
return duplicate_indices_in_test, duplicate_to_original_mapping | |
# Adjust the height of the status_output component using custom CSS | |
with gr.Blocks(css="#status_output { height: 150px; overflow: auto; }") as demo: | |
gr.Markdown("# Semantic Deduplication") | |
deduplication_type = gr.Radio( | |
choices=["Single dataset", "Cross-dataset"], | |
label="Deduplication Type", | |
value="Single dataset", | |
) | |
with gr.Row(): | |
dataset1_name = gr.Textbox(value=default_dataset1_name, label="Dataset 1 Name") | |
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split") | |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
dataset2_inputs = gr.Column(visible=False) | |
with dataset2_inputs: | |
gr.Markdown("### Dataset 2") | |
with gr.Row(): | |
dataset2_name = gr.Textbox(value=default_dataset2_name, label="Dataset 2 Name") | |
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split") | |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
threshold = gr.Slider( | |
minimum=0.0, maximum=1.0, value=default_threshold, label="Similarity Threshold" | |
) | |
compute_button = gr.Button("Compute") | |
# Use 'gr.Markdown' with 'elem_id' and custom CSS to adjust height | |
status_output = gr.Markdown(elem_id="status_output") | |
result_output = gr.Markdown() | |
# Function to update the visibility of dataset2_inputs | |
def update_visibility(deduplication_type_value): | |
if deduplication_type_value == "Cross-dataset": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
deduplication_type.change( | |
update_visibility, inputs=deduplication_type, outputs=dataset2_inputs | |
) | |
compute_button.click( | |
fn=perform_deduplication, | |
inputs=[ | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name, | |
dataset2_split, | |
dataset2_text_column, | |
threshold, | |
], | |
outputs=[status_output, result_output], | |
) | |
demo.launch() | |