Spaces:
Runtime error
Runtime error
File size: 7,378 Bytes
bcb98cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gradio as gr
from gradio.components import Textbox, Checkbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel
import torch
import datasets
from sentence_transformers import CrossEncoder
import math
import re
from nltk import sent_tokenize, word_tokenize
import nltk
nltk.download('punkt')
# Load cross encoder
top_k = 10
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
peft_name = "legacy107/flan-t5-large-ia3-covidqa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pretrained_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, peft_name)
peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)
max_length = 512
max_target_length = 200
# Load your dataset
dataset = datasets.load_dataset("minh21/COVID-QA-Chunk-64-testset-biencoder-data-90_10", split="train")
dataset = dataset.shuffle()
dataset = dataset.select(range(10))
# Context chunking
min_sentences_per_chunk = 3
chunk_size = 64
window_size = math.ceil(min_sentences_per_chunk * 0.25)
over_lap_chunk_size = chunk_size * 0.25
def chunk_splitter(context):
sentences = sent_tokenize(context)
chunks = []
current_chunk = []
for sentence in sentences:
if len(current_chunk) < min_sentences_per_chunk:
current_chunk.append(sentence)
continue
elif len(word_tokenize(' '.join(current_chunk) + " " + sentence)) < chunk_size:
current_chunk.append(sentence)
continue
chunks.append(' '.join(current_chunk))
new_chunk = current_chunk[-window_size:]
new_window = window_size
buffer_new_chunk = new_chunk
while len(word_tokenize(' '.join(new_chunk))) <= over_lap_chunk_size:
buffer_new_chunk = new_chunk
new_window += 1
new_chunk = current_chunk[-new_window:]
if new_window >= len(current_chunk):
break
current_chunk = buffer_new_chunk
current_chunk.append(sentence)
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
def clean_data(text):
# Extract abstract content
index = text.find("\nAbstract: ")
if index != -1:
cleaned_text = text[index + len("\nAbstract: "):]
else:
cleaned_text = text # If "\nAbstract: " is not found, keep the original text
# Remove both http and https links using a regular expression
cleaned_text = re.sub(r'(http(s|)\/\/:( |)\S+)|(http(s|):\/\/( |)\S+)', '', cleaned_text)
# Remove DOI patterns like "doi:10.1371/journal.pone.0007211.s003"
cleaned_text = re.sub(r'doi:( |)\w+', '', cleaned_text)
# Remove the "(0.11 MB DOC)" pattern
cleaned_text = re.sub(r'\(0\.\d+ MB DOC\)', '', cleaned_text)
cleaned_text = re.sub(r'www\.\w+(.org|)', '', cleaned_text)
return cleaned_text
def paraphrase_answer(question, answer, use_pretrained=False):
# Combine question and context
input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
if use_pretrained:
generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
else:
generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return paraphrased_answer
def retrieve_context(question, contexts):
# cross-encoder
hits = [{"corpus_id": i} for i in range(len(contexts))]
cross_inp = [[question, contexts[hit["corpus_id"]]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp, show_progress_bar=False)
for idx in range(len(cross_scores)):
hits[idx]["cross-score"] = cross_scores[idx]
hits = sorted(hits, key=lambda x: x["cross-score"], reverse=True)
return " ".join(
[contexts[hit["corpus_id"]] for hit in hits[0:top_k]]
).replace("\n", " ")
# Define your function to generate answers
def generate_answer(question, context, ground, do_pretrained, do_natural, do_pretrained_natural):
contexts = chunk_splitter(clean_data(context))
context = retrieve_context(question, contexts)
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
# Paraphrase answer
paraphrased_answer = ""
if do_natural:
paraphrased_answer = paraphrase_answer(question, generated_answer)
# Get pretrained model's answer
pretrained_answer = ""
if do_pretrained:
with torch.no_grad():
pretrained_generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
pretrained_answer = tokenizer.decode(pretrained_generated_ids[0], skip_special_tokens=True)
# Get pretrained model's natural answer
pretrained_paraphrased_answer = ""
if do_pretrained_natural:
pretrained_paraphrased_answer = paraphrase_answer(question, generated_answer, True)
return generated_answer, context, paraphrased_answer, pretrained_answer, pretrained_paraphrased_answer
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["context"]
question = example["question"]
answer = example["answer"]
examples.append([question, context, answer, True, True, True])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
Textbox(label="Question"),
Textbox(label="Context"),
Textbox(label="Ground truth"),
Checkbox(label="Include pretrained model's result"),
Checkbox(label="Include natural answer"),
Checkbox(label="Include pretrained model's natural answer")
],
outputs=[
Textbox(label="Generated Answer"),
Textbox(label="Retrieved Context"),
Textbox(label="Natural Answer"),
Textbox(label="Pretrained Model's Answer"),
Textbox(label="Pretrained Model's Natural Answer")
],
examples=list_examples(),
examples_per_page=1,
)
# Launch the Gradio interface
iface.launch() |