File size: 7,378 Bytes
bcb98cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
from gradio.components import Textbox, Checkbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel
import torch
import datasets
from sentence_transformers import CrossEncoder
import math
import re
from nltk import sent_tokenize, word_tokenize
import nltk
nltk.download('punkt')

# Load cross encoder
top_k = 10
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')

# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
peft_name = "legacy107/flan-t5-large-ia3-covidqa"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pretrained_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, peft_name)

peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)

max_length = 512
max_target_length = 200

# Load your dataset
dataset = datasets.load_dataset("minh21/COVID-QA-Chunk-64-testset-biencoder-data-90_10", split="train")
dataset = dataset.shuffle()
dataset = dataset.select(range(10))

# Context chunking
min_sentences_per_chunk = 3
chunk_size = 64
window_size = math.ceil(min_sentences_per_chunk * 0.25)
over_lap_chunk_size = chunk_size * 0.25

def chunk_splitter(context):
    sentences = sent_tokenize(context)
    chunks = []
    current_chunk = []

    for sentence in sentences:
        if len(current_chunk) < min_sentences_per_chunk:
            current_chunk.append(sentence)
            continue
        elif len(word_tokenize(' '.join(current_chunk) + " " + sentence)) < chunk_size:
            current_chunk.append(sentence)
            continue

        chunks.append(' '.join(current_chunk))
        new_chunk = current_chunk[-window_size:]
        new_window = window_size
        buffer_new_chunk = new_chunk

        while len(word_tokenize(' '.join(new_chunk))) <= over_lap_chunk_size:
            buffer_new_chunk = new_chunk
            new_window += 1
            new_chunk = current_chunk[-new_window:]
            if new_window >= len(current_chunk):
               break

        current_chunk = buffer_new_chunk
        current_chunk.append(sentence)


    if current_chunk:
        chunks.append(' '.join(current_chunk))

    return chunks


def clean_data(text):
    # Extract abstract content
    index = text.find("\nAbstract: ")
    if index != -1:
        cleaned_text = text[index + len("\nAbstract: "):]
    else:
        cleaned_text = text  # If "\nAbstract: " is not found, keep the original text

    # Remove both http and https links using a regular expression
    cleaned_text = re.sub(r'(http(s|)\/\/:( |)\S+)|(http(s|):\/\/( |)\S+)', '', cleaned_text)


    # Remove DOI patterns like "doi:10.1371/journal.pone.0007211.s003"
    cleaned_text = re.sub(r'doi:( |)\w+', '', cleaned_text)

    # Remove the "(0.11 MB DOC)" pattern
    cleaned_text = re.sub(r'\(0\.\d+ MB DOC\)', '', cleaned_text)

    cleaned_text = re.sub(r'www\.\w+(.org|)', '', cleaned_text)

    return cleaned_text


def paraphrase_answer(question, answer, use_pretrained=False):
    # Combine question and context
    input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        if use_pretrained:
            generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
        else:
            generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    return paraphrased_answer


def retrieve_context(question, contexts):
    # cross-encoder
    hits = [{"corpus_id": i} for i in range(len(contexts))]
    cross_inp = [[question, contexts[hit["corpus_id"]]] for hit in hits]
    cross_scores = cross_encoder.predict(cross_inp, show_progress_bar=False)

    for idx in range(len(cross_scores)):
        hits[idx]["cross-score"] = cross_scores[idx]

    hits = sorted(hits, key=lambda x: x["cross-score"], reverse=True)

    return " ".join(
        [contexts[hit["corpus_id"]] for hit in hits[0:top_k]]
    ).replace("\n", " ")


# Define your function to generate answers
def generate_answer(question, context, ground, do_pretrained, do_natural, do_pretrained_natural):
    contexts = chunk_splitter(clean_data(context))
    context = retrieve_context(question, contexts)
    
    # Combine question and context
    input_text = f"question: {question} context: {context}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    # Paraphrase answer
    paraphrased_answer = ""
    if do_natural:
        paraphrased_answer = paraphrase_answer(question, generated_answer)

    # Get pretrained model's answer
    pretrained_answer = ""
    if do_pretrained:
        with torch.no_grad():
            pretrained_generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
            pretrained_answer = tokenizer.decode(pretrained_generated_ids[0], skip_special_tokens=True)

    # Get pretrained model's natural answer
    pretrained_paraphrased_answer = ""
    if do_pretrained_natural:
        pretrained_paraphrased_answer = paraphrase_answer(question, generated_answer, True)

    return generated_answer, context, paraphrased_answer, pretrained_answer, pretrained_paraphrased_answer


# Define a function to list examples from the dataset
def list_examples():
    examples = []
    for example in dataset:
        context = example["context"]
        question = example["question"]
        answer = example["answer"]
        examples.append([question, context, answer, True, True, True])
    return examples


# Create a Gradio interface
iface = gr.Interface(
    fn=generate_answer,
    inputs=[
        Textbox(label="Question"),
        Textbox(label="Context"),
        Textbox(label="Ground truth"),
        Checkbox(label="Include pretrained model's result"),
        Checkbox(label="Include natural answer"),
        Checkbox(label="Include pretrained model's natural answer")
    ],
    outputs=[
        Textbox(label="Generated Answer"),
        Textbox(label="Retrieved Context"),
        Textbox(label="Natural Answer"),
        Textbox(label="Pretrained Model's Answer"),
        Textbox(label="Pretrained Model's Natural Answer")
    ],
    examples=list_examples(),
    examples_per_page=1,
)

# Launch the Gradio interface
iface.launch()