theaTRON / src /detection.py
mikonvergence's picture
main src files
aca81a2
raw
history blame
1.56 kB
import numpy as np
import torch
import kornia as K
from kornia.core import Tensor
from kornia.contrib import FaceDetector, FaceDetectorResult, FaceKeypoint
print('Loading Face Detector...')
face_detection = FaceDetector()
print('DONE')
def detect_face(input):
# Preprocessing
img = K.image_to_tensor(np.array(input), keepdim=False)
img = K.color.bgr_to_rgb(img.float())
with torch.no_grad():
dets = face_detection(img)
return [FaceDetectorResult(o) for o in dets[0]]
def process_face(dets):
vis_threshold = 0.8
faces = []
hairs = []
for b in dets:
if b.score < vis_threshold:
continue
reye_kpt=b.get_keypoint(FaceKeypoint.EYE_RIGHT).int().tolist()
leye_kpt=b.get_keypoint(FaceKeypoint.EYE_LEFT).int().tolist()
rmou_kpt=b.get_keypoint(FaceKeypoint.MOUTH_RIGHT).int().tolist()
lmou_kpt=b.get_keypoint(FaceKeypoint.MOUTH_LEFT).int().tolist()
nose_kpt=b.get_keypoint(FaceKeypoint.NOSE).int().tolist()
faces.append([nose_kpt,
rmou_kpt,
lmou_kpt,
reye_kpt,
leye_kpt
])
# point above
top=((b.top_right + b.top_left)/2).int().tolist()
bot=((b.bottom_right + b.bottom_left)/2).int().tolist()
face_h = np.abs(top[1]-bot[1])
top_margin=[top[0], top[1]-face_h*0.1]
hairs.append([
top_margin
])
return faces, hairs