Spaces:
Sleeping
Sleeping
File size: 8,129 Bytes
2ef6911 4095cfa 1bf2670 2ef6911 3c3225d 3aaeae4 35a5ffa 3aaeae4 35a5ffa 3aaeae4 5915d7a 2ef6911 bef48d1 999a1fd ea0b1ef 071e28b 3176d98 c15629e 1bf2670 d3bca06 b4ffaef 56250cf b4ffaef 56250cf 86943bc bc2edb8 56250cf bc2edb8 b31777c bc2edb8 b31777c bc2edb8 b31777c bc2edb8 b31777c bc2edb8 b31777c f72b341 b31777c bc2edb8 56250cf c15629e bc2edb8 56250cf bc2edb8 74b3d03 ba804a7 2032029 3bb5ed0 2032029 4e9c96c 5b933dd a446da1 74b3d03 a446da1 34ff935 bc2edb8 34ff935 ea00a3f 35a5ffa bc2edb8 ea00a3f 34ff935 ea00a3f 34ff935 85eb1e5 bc2edb8 35a5ffa f38b609 34ff935 85eb1e5 b4ffaef c81730f 685e05b f38b609 c81730f f38b609 56250cf 3aaeae4 74b3d03 a446da1 4807660 98aab2d 3ff5e5b 56250cf 98aab2d a446da1 98aab2d 74b3d03 98aab2d 3aaeae4 3ff5e5b a446da1 3aaeae4 f0a6795 4095cfa f0a6795 56250cf 3aaeae4 56250cf 3aaeae4 56250cf 3aaeae4 56250cf 3aaeae4 56250cf 3aaeae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
##########################################################################
# app.py - Pennwick PDF Chat
#
# HuggingFace Spaces application to anlayze uploaded PDF files
# with open-source models ( hkunlp/instructor-xl )
#
# Mike Pastor February 16, 2024
import streamlit as st
from streamlit.components.v1 import html
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from PIL import Image
# Local file
from htmlTemplates import css, bot_template, user_template
# from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
# from langchain.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceHub
def extract_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Chunk size and overlap must not exceed the models capacity!
#
def extract_bitesize_pieces(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=800, # 1000
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def prepare_embedding_vectors(text_chunks):
st.write('Here in vector store....', unsafe_allow_html=True)
# embeddings = OpenAIEmbeddings()
# pip install InstructorEmbedding
# pip install sentence-transformers==2.2.2
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
st.write('Here in vector store - got embeddings ', unsafe_allow_html=True)
# from InstructorEmbedding import INSTRUCTOR
# model = INSTRUCTOR('hkunlp/instructor-xl')
# sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
# instruction = "Represent the Science title:"
# embeddings = model.encode([[instruction, sentence]])
# embeddings = model.encode(text_chunks)
print('have Embeddings: ')
# text_chunks="this is a test"
# FAISS, Chroma and other vector databases
#
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
st.write('FAISS succeeds: ')
return vectorstore
def prepare_conversation(vectorstore):
# llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# google/bigbird-roberta-base facebook/bart-large
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
)
return conversation_chain
def process_user_question(user_question):
print('process_user_question called: \n')
if user_question == None :
print('question is null')
return
if user_question == '' :
print('question is blank')
return
if st == None :
print('session is null')
return
if st.session_state == None :
print('session STATE is null')
return
print('question is: ', user_question)
print('\nsession is: ', st )
response = st.session_state.conversation({'question': user_question})
# response = st.session_state.conversation({'summarization': user_question})
st.session_state.chat_history = response['chat_history']
# st.empty()
results_size = len( response['chat_history'] )
results_string = ""
print('results_size is: ', results_size )
for i, message in enumerate(st.session_state.chat_history):
print('results_size on msg: ', results_size, i, ( results_size - 6 ) )
if results_size > 6:
if i < ( results_size - 6 ):
print( 'skipped line', i)
continue
if i % 2 == 0:
# st.write(user_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
results_string += ( "<p>" + message.content + "</p>" )
else:
# st.write(bot_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
results_string += ( "<p>" + "-- " + message.content + "</p>" )
html(results_string, height=300, scrolling=True)
###################################################################################
def main():
print( 'Pennwick Starting up...\n')
# Load the environment variables - if any
load_dotenv()
##################################################################################
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:")
# im = Image.open("robot_icon.ico")
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im )
# st.set_page_config(page_title="Pennwick PDF Analyzer")
import base64
from PIL import Image
# Open your image
image = Image.open("robot_icon.ico")
# Convert image to base64 string
with open("robot_icon.ico", "rb") as f:
encoded_string = base64.b64encode(f.read()).decode()
# Set page config with base64 string
st.set_page_config(page_title="Pennwick File Analyzer 2", page_icon=f"data:image/ico;base64,{encoded_string}")
print( 'prepared page...\n')
###################
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# st.header("Pennwick File Analyzer :books:")
st.header("Pennwick File Analyzer 2")
user_question = None
user_question = st.text_input("Ask the Model a question about your uploaded documents:")
if user_question != None:
print( 'calling process question', user_question)
process_user_question(user_question)
# st.write( user_template, unsafe_allow_html=True)
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
# st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# Upon button press
if st.button("Process these files"):
with st.spinner("Processing..."):
#################################################################
# Track the overall time for file processing into Vectors
# #
from datetime import datetime
global_now = datetime.now()
global_current_time = global_now.strftime("%H:%M:%S")
st.write("Vectorizing Files - Current Time =", global_current_time)
# get pdf text
raw_text = extract_pdf_text(pdf_docs)
# st.write(raw_text)
# # get the text chunks
text_chunks = extract_bitesize_pieces(raw_text)
# st.write(text_chunks)
# # create vector store
vectorstore = prepare_embedding_vectors(text_chunks)
# # create conversation chain
st.session_state.conversation = prepare_conversation(vectorstore)
# Mission Complete!
global_later = datetime.now()
st.write("Files Vectorized - Total EXECUTION Time =",
(global_later - global_now), global_later)
if __name__ == '__main__':
main()
|