Spaces:
Running
Running
Update readme.
Browse files
README.md
CHANGED
@@ -13,39 +13,22 @@ license: cc-by-nc-sa-4.0
|
|
13 |
<!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference -->
|
14 |
|
15 |
LLMLingua-2 is a branch of work from project:
|
16 |
-
|
17 |
-
|
18 |
-
<div style="width: 100px; margin-right: 10px; height:auto;" align="left">
|
19 |
-
<img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left">
|
20 |
-
</div>
|
21 |
-
<div style="flex-grow: 1;" align="center">
|
22 |
-
<h2 align="center">LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression</h2>
|
23 |
-
</div>
|
24 |
-
</div> -->
|
25 |
-
<!-- <p align="center">
|
26 |
-
| <a href="https://llmlingua.com/"><b>Project Page</b></a> |
|
27 |
-
<a href="https://aclanthology.org/2023.emnlp-main.825/"><b>LLMLingua</b></a> |
|
28 |
-
<a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua</b></a> |
|
29 |
-
<a href="https://arxiv.org/abs/2403."><b>LLMLingua-2</b></a> |
|
30 |
-
<a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>LLMLingua Demo</b></a> |
|
31 |
-
<a href="https://huggingface.co/spaces/microsoft/LLMLingua-2"><b>LLMLingua-2 Demo</b></a> |
|
32 |
-
</p> -->
|
33 |
| [**Project Page**](https://llmlingua.com/) | [**LLMLingua**](https://aclanthology.org/2023.emnlp-main.825/) | [**LongLLMLingua**](https://arxiv.org/abs/2310.06839) | [**LLMLingua-2**](https://arxiv.org/abs/2403.12968) | [**LLMLingua Demo**](https://huggingface.co/spaces/microsoft/LLMLingua) | [**LLMLingua-2 Demo**](https://huggingface.co/spaces/microsoft/LLMLingua-2) |
|
34 |
|
35 |
-
Check the links above for more information
|
36 |
-
|
|
|
37 |
|
38 |
**LLMLingua** utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
|
39 |
-
|
40 |
- [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://aclanthology.org/2023.emnlp-main.825/) (EMNLP 2023)<br>
|
41 |
_Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
|
42 |
|
43 |
**LongLLMLingua** mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens.
|
44 |
-
|
45 |
- [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br>
|
46 |
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
|
47 |
|
48 |
**LLMLingua-2**, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.
|
49 |
-
|
50 |
- [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br>
|
51 |
_Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_
|
|
|
13 |
<!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference -->
|
14 |
|
15 |
LLMLingua-2 is a branch of work from project:
|
16 |
+
|
17 |
+
# LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
| [**Project Page**](https://llmlingua.com/) | [**LLMLingua**](https://aclanthology.org/2023.emnlp-main.825/) | [**LongLLMLingua**](https://arxiv.org/abs/2310.06839) | [**LLMLingua-2**](https://arxiv.org/abs/2403.12968) | [**LLMLingua Demo**](https://huggingface.co/spaces/microsoft/LLMLingua) | [**LLMLingua-2 Demo**](https://huggingface.co/spaces/microsoft/LLMLingua-2) |
|
19 |
|
20 |
+
Check the links above for more information!
|
21 |
+
|
22 |
+
## Brief Introduction 📚
|
23 |
|
24 |
**LLMLingua** utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
|
|
|
25 |
- [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://aclanthology.org/2023.emnlp-main.825/) (EMNLP 2023)<br>
|
26 |
_Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
|
27 |
|
28 |
**LongLLMLingua** mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens.
|
|
|
29 |
- [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br>
|
30 |
_Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
|
31 |
|
32 |
**LLMLingua-2**, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.
|
|
|
33 |
- [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br>
|
34 |
_Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_
|