import gradio as gr import modin.pandas as pd import torch import time from optimum.intel import OVStableDiffusionXLPipeline import numpy as np from PIL import Image from diffusers import AutoPipelineForImage2Image from diffusers.utils import load_image import math from DeepCache import DeepCacheSDHelper adapter_id = "latent-consistency/lcm-lora-sdv1-5" device = "cuda" if torch.cuda.is_available() else "cpu" # helper = DeepCacheSDHelper(pipe=pipe) # helper.set_params( # cache_interval=3, # cache_branch_id=0, # ) # helper.enable() # pipe.compile() def resize(target_size,source): original_width,original_height =source.size aspect_ratio = original_height / original_width # 计算新的高度以保持宽高比,假设我们先确定宽度为512像素 new_width = target_size new_height = int(new_width*aspect_ratio) # 如果新高度超过目标大小,则重新计算宽度以保持目标高度 if new_height > target_size: new_height = target_size new_width = int(new_height / aspect_ratio) print("宽高",original_height,original_width,aspect_ratio,new_height) # 等比例缩放图片 # resized_image = Image.fromarray(image_array).resize((new_width, new_height), resample=Image.LANCZOS) resized_image =source.resize((new_width, new_height)) return resized_image def infer(model_id,source_img, prompt, steps, seed, Strength): pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo") pipe = pipe.to(device) # pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) # tcd_lora_id = "h1t/TCD-SDXL-LoRA" # pipe.load_lora_weights(tcd_lora_id) # pipe.fuse_lora() start_time = time.time() generator = torch.Generator(device).manual_seed(seed) if int(steps * Strength) < 1: steps = math.ceil(1 / max(0.10, Strength)) source_image = resize(512, source_img) source_image.save('source.png') image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0] end_time = time.time() elapsed_time = end_time - start_time print("生成时间",elapsed_time) return image gr.Interface(fn=infer, inputs=[ gr.Text(value="IDKiro/sdxs-512-dreamshaper", label="Checkpoint"), gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0.1, maximum = 1, step = .05, value = .5)], outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL Turbo see https://huggingface.co/stabilityai/sdxl-turbo

Upload an Image, Use your Cam, or Paste an Image. Then enter a Prompt, or let it just do its Thing, then click submit. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: Manjushri").queue(max_size=10).launch()