Spaces:
Runtime error
Runtime error
test
Browse files
app.py
CHANGED
@@ -23,10 +23,24 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
23 |
# helper.enable()
|
24 |
# pipe.compile()
|
25 |
|
26 |
-
def resize(
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def infer(model_id,source_img, prompt, steps, seed, Strength):
|
32 |
pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
@@ -48,7 +62,7 @@ def infer(model_id,source_img, prompt, steps, seed, Strength):
|
|
48 |
return image
|
49 |
|
50 |
gr.Interface(fn=infer, inputs=[
|
51 |
-
gr.Text(value="
|
52 |
gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
|
53 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
54 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|
|
|
23 |
# helper.enable()
|
24 |
# pipe.compile()
|
25 |
|
26 |
+
def resize(target_size,source):
|
27 |
+
original_width,original_height =source.size
|
28 |
+
aspect_ratio = original_height / original_width
|
29 |
+
|
30 |
+
# 计算新的高度以保持宽高比,假设我们先确定宽度为512像素
|
31 |
+
new_width = target_size
|
32 |
+
new_height = int(new_width*aspect_ratio)
|
33 |
+
|
34 |
+
# 如果新高度超过目标大小,则重新计算宽度以保持目标高度
|
35 |
+
if new_height > target_size:
|
36 |
+
new_height = target_size
|
37 |
+
new_width = int(new_height / aspect_ratio)
|
38 |
+
print("宽高",original_height,original_width,aspect_ratio,new_height)
|
39 |
+
# 等比例缩放图片
|
40 |
+
# resized_image = Image.fromarray(image_array).resize((new_width, new_height), resample=Image.LANCZOS)
|
41 |
+
resized_image =source.resize((new_width, new_height))
|
42 |
+
return resized_image
|
43 |
+
|
44 |
|
45 |
def infer(model_id,source_img, prompt, steps, seed, Strength):
|
46 |
pipe = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.float16, export=True) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo")
|
|
|
62 |
return image
|
63 |
|
64 |
gr.Interface(fn=infer, inputs=[
|
65 |
+
gr.Text(value="IDKiro/sdxs-512-dreamshaper", label="Checkpoint"),
|
66 |
gr.Image(sources=["upload", "webcam", "clipboard"], type="filepath", label="Raw Image."),
|
67 |
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'),
|
68 |
gr.Slider(1, 5, value = 2, step = 1, label = 'Number of Iterations'),
|