|
import ast |
|
import os |
|
import json |
|
from matplotlib.patches import Polygon |
|
from matplotlib.collections import PatchCollection |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import cv2 |
|
import inflect |
|
|
|
p = inflect.engine() |
|
|
|
img_dir = "imgs" |
|
bg_prompt_text = "Background prompt: " |
|
|
|
box_scale = (512, 512) |
|
size = box_scale |
|
size_h, size_w = size |
|
print(f"Using box scale: {box_scale}") |
|
|
|
def parse_input(text=None, no_input=False): |
|
if not text: |
|
if no_input: |
|
return |
|
|
|
text = input("Enter the response: ") |
|
if "Objects: " in text: |
|
text = text.split("Objects: ")[1] |
|
|
|
text_split = text.split(bg_prompt_text) |
|
if len(text_split) == 2: |
|
gen_boxes, bg_prompt = text_split |
|
elif len(text_split) == 1: |
|
if no_input: |
|
return |
|
gen_boxes = text |
|
bg_prompt = "" |
|
while not bg_prompt: |
|
|
|
bg_prompt = input("Enter the background prompt: ").strip() |
|
if bg_prompt_text in bg_prompt: |
|
bg_prompt = bg_prompt.split(bg_prompt_text)[1] |
|
else: |
|
raise ValueError(f"text: {text}") |
|
try: |
|
gen_boxes = ast.literal_eval(gen_boxes) |
|
except SyntaxError as e: |
|
|
|
if "No objects" in gen_boxes: |
|
gen_boxes = [] |
|
else: |
|
raise e |
|
bg_prompt = bg_prompt.strip() |
|
|
|
return gen_boxes, bg_prompt |
|
|
|
def filter_boxes(gen_boxes, scale_boxes=True, ignore_background=True, max_scale=3): |
|
if len(gen_boxes) == 0: |
|
return [] |
|
|
|
box_dict_format = False |
|
gen_boxes_new = [] |
|
for gen_box in gen_boxes: |
|
if isinstance(gen_box, dict): |
|
name, [bbox_x, bbox_y, bbox_w, bbox_h] = gen_box['name'], gen_box['bounding_box'] |
|
box_dict_format = True |
|
else: |
|
name, [bbox_x, bbox_y, bbox_w, bbox_h] = gen_box |
|
if bbox_w <= 0 or bbox_h <= 0: |
|
|
|
continue |
|
if ignore_background: |
|
if (bbox_w >= size[1] and bbox_h >= size[0]) or bbox_x > size[1] or bbox_y > size[0]: |
|
|
|
continue |
|
gen_boxes_new.append(gen_box) |
|
|
|
gen_boxes = gen_boxes_new |
|
|
|
if len(gen_boxes) == 0: |
|
return [] |
|
|
|
filtered_gen_boxes = [] |
|
if box_dict_format: |
|
|
|
bbox_left_x_min = min([gen_box['bounding_box'][0] for gen_box in gen_boxes]) |
|
bbox_right_x_max = max([gen_box['bounding_box'][0] + gen_box['bounding_box'][2] for gen_box in gen_boxes]) |
|
bbox_top_y_min = min([gen_box['bounding_box'][1] for gen_box in gen_boxes]) |
|
bbox_bottom_y_max = max([gen_box['bounding_box'][1] + gen_box['bounding_box'][3] for gen_box in gen_boxes]) |
|
else: |
|
bbox_left_x_min = min([gen_box[1][0] for gen_box in gen_boxes]) |
|
bbox_right_x_max = max([gen_box[1][0] + gen_box[1][2] for gen_box in gen_boxes]) |
|
bbox_top_y_min = min([gen_box[1][1] for gen_box in gen_boxes]) |
|
bbox_bottom_y_max = max([gen_box[1][1] + gen_box[1][3] for gen_box in gen_boxes]) |
|
|
|
|
|
if (bbox_right_x_max - bbox_left_x_min) == 0: |
|
return [] |
|
|
|
|
|
shift = -bbox_left_x_min |
|
scale = size_w / (bbox_right_x_max - bbox_left_x_min) |
|
|
|
scale = min(scale, max_scale) |
|
|
|
for gen_box in gen_boxes: |
|
if box_dict_format: |
|
name, [bbox_x, bbox_y, bbox_w, bbox_h] = gen_box['name'], gen_box['bounding_box'] |
|
else: |
|
name, [bbox_x, bbox_y, bbox_w, bbox_h] = gen_box |
|
|
|
if scale_boxes: |
|
|
|
|
|
|
|
bbox_x = (bbox_x + shift) * scale |
|
bbox_y = bbox_y * scale |
|
bbox_w, bbox_h = bbox_w * scale, bbox_h * scale |
|
|
|
bbox_y_offset = 0 |
|
if bbox_top_y_min * scale + bbox_y_offset < 0: |
|
bbox_y_offset -= bbox_top_y_min * scale |
|
if bbox_bottom_y_max * scale + bbox_y_offset >= size_h: |
|
bbox_y_offset -= bbox_bottom_y_max * scale - size_h |
|
bbox_y += bbox_y_offset |
|
|
|
if bbox_y < 0: |
|
bbox_y, bbox_h = 0, bbox_h - bbox_y |
|
|
|
name = name.rstrip(".") |
|
bounding_box = (int(np.round(bbox_x)), int(np.round(bbox_y)), int(np.round(bbox_w)), int(np.round(bbox_h))) |
|
if box_dict_format: |
|
gen_box = { |
|
'name': name, |
|
'bounding_box': bounding_box |
|
} |
|
else: |
|
gen_box = (name, bounding_box) |
|
|
|
filtered_gen_boxes.append(gen_box) |
|
|
|
return filtered_gen_boxes |
|
|
|
def draw_boxes(anns): |
|
ax = plt.gca() |
|
ax.set_autoscale_on(False) |
|
polygons = [] |
|
color = [] |
|
for ann in anns: |
|
c = (np.random.random((1, 3))*0.6+0.4) |
|
[bbox_x, bbox_y, bbox_w, bbox_h] = ann['bbox'] |
|
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], |
|
[bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] |
|
np_poly = np.array(poly).reshape((4, 2)) |
|
polygons.append(Polygon(np_poly)) |
|
color.append(c) |
|
|
|
|
|
name = ann['name'] if 'name' in ann else str(ann['category_id']) |
|
ax.text(bbox_x, bbox_y, name, style='italic', |
|
bbox={'facecolor': 'white', 'alpha': 0.7, 'pad': 5}) |
|
|
|
p = PatchCollection(polygons, facecolor='none', |
|
edgecolors=color, linewidths=2) |
|
ax.add_collection(p) |
|
|
|
|
|
def show_boxes(gen_boxes, bg_prompt=None, ind=None, show=False): |
|
if len(gen_boxes) == 0: |
|
return |
|
|
|
if isinstance(gen_boxes[0], dict): |
|
anns = [{'name': gen_box['name'], 'bbox': gen_box['bounding_box']} |
|
for gen_box in gen_boxes] |
|
else: |
|
anns = [{'name': gen_box[0], 'bbox': gen_box[1]} for gen_box in gen_boxes] |
|
|
|
|
|
I = np.ones((size[0]+4, size[1]+4, 3), dtype=np.uint8) * 255 |
|
|
|
plt.imshow(I) |
|
plt.axis('off') |
|
|
|
if bg_prompt is not None: |
|
ax = plt.gca() |
|
ax.text(0, 0, bg_prompt, style='italic', |
|
bbox={'facecolor': 'white', 'alpha': 0.7, 'pad': 5}) |
|
|
|
c = (np.zeros((1, 3))) |
|
[bbox_x, bbox_y, bbox_w, bbox_h] = (0, 0, size[1], size[0]) |
|
poly = [[bbox_x, bbox_y], [bbox_x, bbox_y+bbox_h], |
|
[bbox_x+bbox_w, bbox_y+bbox_h], [bbox_x+bbox_w, bbox_y]] |
|
np_poly = np.array(poly).reshape((4, 2)) |
|
polygons = [Polygon(np_poly)] |
|
color = [c] |
|
p = PatchCollection(polygons, facecolor='none', |
|
edgecolors=color, linewidths=2) |
|
ax.add_collection(p) |
|
|
|
draw_boxes(anns) |
|
if show: |
|
plt.show() |
|
else: |
|
print("Saved to", f"{img_dir}/boxes.png", f"ind: {ind}") |
|
if ind is not None: |
|
plt.savefig(f"{img_dir}/boxes_{ind}.png") |
|
plt.savefig(f"{img_dir}/boxes.png") |
|
|
|
|
|
def show_masks(masks): |
|
masks_to_show = np.zeros((*size, 3), dtype=np.float32) |
|
for mask in masks: |
|
c = (np.random.random((3,))*0.6+0.4) |
|
|
|
masks_to_show += mask[..., None] * c[None, None, :] |
|
plt.imshow(masks_to_show) |
|
plt.savefig(f"{img_dir}/masks.png") |
|
plt.show() |
|
plt.clf() |
|
|
|
def convert_box(box, height, width): |
|
|
|
x_min, y_min = box[0] / width, box[1] / height |
|
w_box, h_box = box[2] / width, box[3] / height |
|
|
|
x_max, y_max = x_min + w_box, y_min + h_box |
|
|
|
return x_min, y_min, x_max, y_max |
|
|
|
def convert_spec(spec, height, width, include_counts=True, verbose=False): |
|
|
|
prompt, gen_boxes, bg_prompt = spec['prompt'], spec['gen_boxes'], spec['bg_prompt'] |
|
|
|
|
|
gen_boxes = sorted(gen_boxes, key=lambda gen_box: gen_box[0]) |
|
|
|
gen_boxes = [(name, convert_box(box, height=height, width=width)) for name, box in gen_boxes] |
|
|
|
|
|
|
|
|
|
if bg_prompt: |
|
so_prompt_phrase_word_box_list = [(f"{bg_prompt} with {name}", name, name.split(" ")[-1], box) for name, box in gen_boxes] |
|
else: |
|
so_prompt_phrase_word_box_list = [(f"{name}", name, name.split(" ")[-1], box) for name, box in gen_boxes] |
|
|
|
objects = [gen_box[0] for gen_box in gen_boxes] |
|
|
|
objects_unique, objects_count = np.unique(objects, return_counts=True) |
|
|
|
num_total_matched_boxes = 0 |
|
overall_phrases_words_bboxes = [] |
|
for ind, object_name in enumerate(objects_unique): |
|
bboxes = [box for name, box in gen_boxes if name == object_name] |
|
|
|
if objects_count[ind] > 1: |
|
phrase = p.plural_noun(object_name.replace("an ", "").replace("a ", "")) |
|
if include_counts: |
|
phrase = p.number_to_words(objects_count[ind]) + " " + phrase |
|
else: |
|
phrase = object_name |
|
|
|
word = phrase.split(' ')[-1] |
|
|
|
num_total_matched_boxes += len(bboxes) |
|
overall_phrases_words_bboxes.append((phrase, word, bboxes)) |
|
|
|
assert num_total_matched_boxes == len(gen_boxes), f"{num_total_matched_boxes} != {len(gen_boxes)}" |
|
|
|
objects_str = ", ".join([phrase for phrase, _, _ in overall_phrases_words_bboxes]) |
|
if objects_str: |
|
if bg_prompt: |
|
overall_prompt = f"{bg_prompt} with {objects_str}" |
|
else: |
|
overall_prompt = objects_str |
|
else: |
|
overall_prompt = bg_prompt |
|
|
|
if verbose: |
|
print("so_prompt_phrase_word_box_list:", so_prompt_phrase_word_box_list) |
|
print("overall_prompt:", overall_prompt) |
|
print("overall_phrases_words_bboxes:", overall_phrases_words_bboxes) |
|
|
|
return so_prompt_phrase_word_box_list, overall_prompt, overall_phrases_words_bboxes |
|
|