File size: 4,600 Bytes
0305ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, DDIMInverseScheduler, DPMSolverMultistepScheduler
from .unet_2d_condition import UNet2DConditionModel
from easydict import EasyDict
import numpy as np
# For compatibility
from utils.latents import get_unscaled_latents, get_scaled_latents, blend_latents
from utils import torch_device
def load_sd(key="runwayml/stable-diffusion-v1-5", use_fp16=False, load_inverse_scheduler=True):
"""
Keys:
key = "CompVis/stable-diffusion-v1-4"
key = "runwayml/stable-diffusion-v1-5"
key = "stabilityai/stable-diffusion-2-1-base"
Unpack with:
```
model_dict = load_sd(key=key, use_fp16=use_fp16)
vae, tokenizer, text_encoder, unet, scheduler, dtype = model_dict.vae, model_dict.tokenizer, model_dict.text_encoder, model_dict.unet, model_dict.scheduler, model_dict.dtype
```
use_fp16: fp16 might have degraded performance
"""
# run final results in fp32
if use_fp16:
dtype = torch.float16
revision = "fp16"
else:
dtype = torch.float
revision = "main"
vae = AutoencoderKL.from_pretrained(key, subfolder="vae", revision=revision, torch_dtype=dtype).to(torch_device)
tokenizer = CLIPTokenizer.from_pretrained(key, subfolder="tokenizer", revision=revision, torch_dtype=dtype)
text_encoder = CLIPTextModel.from_pretrained(key, subfolder="text_encoder", revision=revision, torch_dtype=dtype).to(torch_device)
unet = UNet2DConditionModel.from_pretrained(key, subfolder="unet", revision=revision, torch_dtype=dtype).to(torch_device)
dpm_scheduler = DPMSolverMultistepScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype)
scheduler = DDIMScheduler.from_pretrained(key, subfolder="scheduler", revision=revision, torch_dtype=dtype)
model_dict = EasyDict(vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, dpm_scheduler=dpm_scheduler, dtype=dtype)
if load_inverse_scheduler:
inverse_scheduler = DDIMInverseScheduler.from_config(scheduler.config)
model_dict.inverse_scheduler = inverse_scheduler
return model_dict
def encode_prompts(tokenizer, text_encoder, prompts, negative_prompt="", return_full_only=False, one_uncond_input_only=False):
if negative_prompt == "":
print("Note that negative_prompt is an empty string")
text_input = tokenizer(
prompts, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt"
)
max_length = text_input.input_ids.shape[-1]
if one_uncond_input_only:
num_uncond_input = 1
else:
num_uncond_input = len(prompts)
uncond_input = tokenizer([negative_prompt] * num_uncond_input, padding="max_length", max_length=max_length, return_tensors="pt")
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
cond_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
if one_uncond_input_only:
return uncond_embeddings, cond_embeddings
text_embeddings = torch.cat([uncond_embeddings, cond_embeddings])
if return_full_only:
return text_embeddings
return text_embeddings, uncond_embeddings, cond_embeddings
def process_input_embeddings(input_embeddings):
assert isinstance(input_embeddings, (tuple, list))
if len(input_embeddings) == 3:
# input_embeddings: text_embeddings, uncond_embeddings, cond_embeddings
# Assume `uncond_embeddings` is full (has batch size the same as cond_embeddings)
_, uncond_embeddings, cond_embeddings = input_embeddings
assert uncond_embeddings.shape[0] == cond_embeddings.shape[0], f"{uncond_embeddings.shape[0]} != {cond_embeddings.shape[0]}"
return input_embeddings
elif len(input_embeddings) == 2:
# input_embeddings: uncond_embeddings, cond_embeddings
# uncond_embeddings may have only one item
uncond_embeddings, cond_embeddings = input_embeddings
if uncond_embeddings.shape[0] == 1:
uncond_embeddings = uncond_embeddings.expand(cond_embeddings.shape)
# We follow the convention: negative (unconditional) prompt comes first
text_embeddings = torch.cat((uncond_embeddings, cond_embeddings), dim=0)
return text_embeddings, uncond_embeddings, cond_embeddings
else:
raise ValueError(f"input_embeddings length: {len(input_embeddings)}")
|