Spaces:
Runtime error
Runtime error
import math | |
import os | |
import random | |
from functools import lru_cache | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import HfFileSystem, HfApi | |
from imgutils.utils import open_onnx_model | |
from natsort import natsorted | |
hf_token = os.environ.get('HF_TOKEN') | |
hf_fs = HfFileSystem(token=hf_token) | |
hf_client = HfApi(token=hf_token) | |
REPOSITORY = 'mf666/shit-checker' | |
MODELS = natsorted([ | |
os.path.splitext(os.path.relpath(file, REPOSITORY))[0] | |
for file in hf_fs.glob(f'{REPOSITORY}/*.onnx') | |
]) | |
DEFAULT_MODEL = 'mobilenet.xs.v2' | |
def _open_model(model_name): | |
return open_onnx_model(hf_client.hf_hub_download(REPOSITORY, f'{model_name}.onnx')) | |
_DEFAULT_ORDER = 'HWC' | |
def _get_hwc_map(order_): | |
return tuple(_DEFAULT_ORDER.index(c) for c in order_.upper()) | |
def _encode_channels(image, channels_order='CHW', is_float=True): | |
array = np.asarray(image.convert('RGB')) | |
array = np.transpose(array, _get_hwc_map(channels_order)) | |
if not is_float: | |
assert array.dtype == np.uint8 | |
else: | |
array = (array / 255.0).astype(np.float32) | |
assert array.dtype == np.float32 | |
return array | |
def _img_encode(image, size=(384, 384), normalize=(0.5, 0.5)): | |
image = image.resize(size, Image.BILINEAR) | |
data = _encode_channels(image, channels_order='CHW') | |
if normalize is not None: | |
mean_, std_ = normalize | |
mean = np.asarray([mean_]).reshape((-1, 1, 1)) | |
std = np.asarray([std_]).reshape((-1, 1, 1)) | |
data = (data - mean) / std | |
return data.astype(np.float32) | |
def _raw_predict(images, model_name=DEFAULT_MODEL): | |
items = [] | |
for image in images: | |
items.append(_img_encode(image.convert('RGB'))) | |
input_ = np.stack(items) | |
output, = _open_model(model_name).run(['output'], {'input': input_}) | |
return output.mean(axis=0) | |
def predict(image, model_name=DEFAULT_MODEL, max_batch_size=8): | |
area = image.width * image.height | |
batch_size = int(max(min(math.ceil(area / (384 * 384)) + 1, max_batch_size), 1)) | |
blocks = [] | |
for _ in range(batch_size): | |
x0 = random.randint(0, max(0, image.width - 384)) | |
y0 = random.randint(0, max(0, image.height - 384)) | |
x1 = min(x0 + 384, image.width) | |
y1 = min(y0 + 384, image.height) | |
blocks.append(image.crop((x0, y0, x1, y1))) | |
scores = _raw_predict(blocks, model_name) | |
return dict(zip(['shat', 'normal'], map(lambda x: x.item(), scores))) | |