clementchadebec commited on
Commit
ef0e8a5
1 Parent(s): 7a9049a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -86
app.py CHANGED
@@ -1,52 +1,96 @@
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
6
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
8
 
9
  if torch.cuda.is_available():
10
  torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
 
 
 
 
 
 
 
 
 
13
  pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
 
 
 
 
 
 
 
16
  pipe = pipe.to(device)
17
 
 
 
 
 
 
 
 
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
  MAX_IMAGE_SIZE = 1024
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
  return image
39
 
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
 
 
 
 
 
 
44
  ]
45
 
46
- css="""
47
  #col-container {
48
  margin: 0 auto;
49
- max-width: 520px;
50
  }
51
  """
52
 
@@ -56,15 +100,24 @@ else:
56
  power_device = "CPU"
57
 
58
  with gr.Blocks(css=css) as demo:
59
-
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
 
 
 
 
63
  Currently running on {power_device}.
64
- """)
65
-
 
 
 
 
 
 
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,20 +125,12 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
-
78
  result = gr.Image(label="Result", show_label=False)
79
 
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,54 +138,23 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
 
 
 
 
 
 
 
 
 
144
  )
145
 
146
- demo.queue().launch()
 
1
+ import random
2
+ import spaces
3
+
4
  import gradio as gr
5
  import numpy as np
 
 
6
  import torch
7
+ from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
8
+ from peft import PeftModel
9
+ import os
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
+ IS_SPACE = os.environ.get("SPACE_ID", None) is not None
13
+
14
+ transformer = SD3Transformer2DModel.from_pretrained(
15
+ "stabilityai/stable-diffusion-3-medium",
16
+ subfolder="transformer",
17
+ torch_dtype=torch.float16,
18
+ revision="refs/pr/26"
19
+ )
20
+ transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-sd3")
21
+
22
 
23
  if torch.cuda.is_available():
24
  torch.cuda.max_memory_allocated(device=device)
25
+ pipe = StableDiffusion3Pipeline.from_pretrained(
26
+ "stabilityai/stable-diffusion-3-medium",
27
+ revision="refs/pr/26",
28
+ transformer=transformer,
29
+ torch_dtype=torch.float16,
30
+ text_encoder_3=None,
31
+ tokenizer_3=None
32
+ )
33
+
34
+ if not IS_SPACE:
35
+ pipe.enable_xformers_memory_efficient_attention()
36
  pipe = pipe.to(device)
37
+ else:
38
+ pipe = StableDiffusion3Pipeline.from_pretrained(
39
+ "stabilityai/stable-diffusion-3-medium",
40
+ revision="refs/pr/26",
41
+ transformer=transformer,
42
+ torch_dtype=torch.float16,
43
+ text_encoder_3=None,
44
+ tokenizer_3=None
45
+ )
46
  pipe = pipe.to(device)
47
 
48
+ pipe.text_encoder.to_bettertransformer()
49
+
50
+ pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(
51
+ "stabilityai/stable-diffusion-3-medium",
52
+ subfolder="scheduler",
53
+ revision="refs/pr/26",
54
+ )
55
+
56
  MAX_SEED = np.iinfo(np.int32).max
57
  MAX_IMAGE_SIZE = 1024
58
+ NUM_INFERENCE_STEPS = 4
59
 
 
60
 
61
+ @spaces.GPU
62
+ def infer(prompt, seed, randomize_seed):
63
  if randomize_seed:
64
  seed = random.randint(0, MAX_SEED)
65
+
66
  generator = torch.Generator().manual_seed(seed)
67
+
68
  image = pipe(
69
+ prompt=prompt,
70
+ guidance_scale=0,
71
+ num_inference_steps=NUM_INFERENCE_STEPS,
72
+ generator=generator,
73
+ ).images[0]
74
+
 
 
 
75
  return image
76
 
77
+
78
  examples = [
79
+ "The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
80
+ "A raccoon reading a book in a lush forest.",
81
+ "A small cactus with a happy face in the Sahara desert.",
82
+ "A super-realistic close-up of a snake eye",
83
+ "A cute cheetah looking amazed and surprised",
84
+ "Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights",
85
+ "a cute fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic",
86
+ "A close up of an old elderly man with green eyes looking straight at the camera",
87
+ "A beautiful sunflower in rainy day",
88
  ]
89
 
90
+ css = """
91
  #col-container {
92
  margin: 0 auto;
93
+ max-width: 512px;
94
  }
95
  """
96
 
 
100
  power_device = "CPU"
101
 
102
  with gr.Blocks(css=css) as demo:
 
103
  with gr.Column(elem_id="col-container"):
104
+ gr.Markdown(
105
+ f"""
106
+ # ⚡ Flash Diffusion: FlashPixart ⚡
107
+ This is an interactive demo of [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/), a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
108
+ Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin.*
109
+ [This model](https://huggingface.co/jasperai/flash-sd3) is a **66.5M** LoRA distilled version of [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium) model that is able to generate 1024x1024 images in **4 steps**.
110
  Currently running on {power_device}.
111
+ """
112
+ )
113
+ gr.Markdown(
114
+ "If you enjoy the space, please also promote *open-source* by giving a ⭐ to the <a href='https://github.com/gojasper/flash-diffusion' target='_blank'>Github Repo</a>."
115
+ )
116
+ gr.Markdown(
117
+ "💡 *Hint:* To better appreciate the low latency of our method, run the demo locally !"
118
+ )
119
+
120
  with gr.Row():
 
121
  prompt = gr.Text(
122
  label="Prompt",
123
  show_label=False,
 
125
  placeholder="Enter your prompt",
126
  container=False,
127
  )
128
+
129
  run_button = gr.Button("Run", scale=0)
130
+
131
  result = gr.Image(label="Result", show_label=False)
132
 
133
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
134
  seed = gr.Slider(
135
  label="Seed",
136
  minimum=0,
 
138
  step=1,
139
  value=0,
140
  )
141
+
142
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
+ examples = gr.Examples(examples=examples, inputs=[prompt])
145
+
146
+ gr.Markdown("**Disclaimer:**")
147
+ gr.Markdown(
148
+ "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
149
+ )
150
+ gr.on(
151
+ [run_button.click, seed.change, randomize_seed.change, prompt.submit],
152
+ fn=infer,
153
+ inputs=[prompt, seed, randomize_seed],
154
+ outputs=[result],
155
+ show_progress="minimal",
156
+ show_api=False,
157
+ trigger_mode="always_last",
158
  )
159
 
160
+ demo.queue().launch(show_api=False)