from transformers import ChameleonProcessor, ChameleonForConditionalGeneration, TextIteratorStreamer, BitsAndBytesConfig import torch from PIL import Image import requests import spaces from threading import Thread import gradio as gr from gradio import FileData import time processor = ChameleonProcessor.from_pretrained("facebook/chameleon-7b") model = ChameleonForConditionalGeneration.from_pretrained("facebook/chameleon-7b", torch_dtype=torch.float16).to("cuda") @spaces.GPU def bot_streaming(message, history): txt = message.text ext_buffer = f"{txt}" if message.files: if len(message.files) == 1: image = [message.files[0].path] # interleaved images or video elif len(message.files) > 1: image = [msg.path for msg in message.files] else: def has_file_data(lst): return any(isinstance(item, FileData) for sublist in lst if isinstance(sublist, tuple) for item in sublist) def extract_paths(lst): return [item.path for sublist in lst if isinstance(sublist, tuple) for item in sublist if isinstance(item, FileData)] latest_text_only_index = -1 for i, item in enumerate(history): if all(isinstance(sub_item, str) for sub_item in item): latest_text_only_index = i image = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)] if message.files is None: gr.Error("You need to upload an image or video for LLaVA to work.") image_extensions = Image.registered_extensions() image_extensions = tuple([ex for ex, f in image_extensions.items()]) if len(image) == 1: image = Image.open(image[0]).convert("RGB") prompt = f"{message.text}" elif len(image) > 1: image_list = [] user_prompt = message.text for img in image: img = Image.open(img).convert("RGB") image_list.append(img) toks = "" * len(image_list) prompt = user_prompt + toks image = image_list inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16) streamer = TextIteratorStreamer(processor, {"skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=250) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text generated_text_without_prompt = buffer#[len(ext_buffer):] time.sleep(0.01) yield buffer demo = gr.ChatInterface(fn=bot_streaming, title="Chameleon 🦎", examples=[ {"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./wat_arun.jpg"]}, {"text": "Do these two pieces belong to the same era and if so, which era is it?", "files":["./rococo_1.jpg","./rococo_2.jpg"]}, {"text": "What art style is this and which century?", "files":["./rococo_1.jpg"]}, {"text": "What is on the flower?", "files":["./bee.jpg"]}], textbox=gr.MultimodalTextbox(file_count="multiple"), description="Try [Chameleon-7B](https://huggingface.co/facebook/chameleon-7b) by Meta with transformers in this demo. Upload image(s), and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error. ", stop_btn="Stop Generation", multimodal=True) demo.launch(debug=True)