Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from transformers import Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForZeroShotObjectDetection | |
import torch | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
owl_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to("cuda") | |
owl_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") | |
dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base") | |
dino_model = AutoModelForZeroShotObjectDetection.from_pretrained("IDEA-Research/grounding-dino-base").to("cuda") | |
def infer(img, text_queries, score_threshold, model): | |
if model == "dino": | |
queries="" | |
for query in text_queries: | |
queries += f"{query}. " | |
width, height = img.shape[:2] | |
target_sizes=[(width, height)] | |
inputs = dino_processor(text=queries, images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = dino_model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = dino_processor.post_process_grounded_object_detection(outputs=outputs, input_ids=inputs.input_ids, | |
box_threshold=score_threshold, | |
target_sizes=target_sizes) | |
elif model == "owl": | |
size = max(img.shape[:2]) | |
target_sizes = torch.Tensor([[size, size]]) | |
inputs = owl_processor(text=text_queries, images=img, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = owl_model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = owl_processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes) | |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] | |
result_labels = [] | |
for box, score, label in zip(boxes, scores, labels): | |
box = [int(i) for i in box.tolist()] | |
if score < score_threshold: | |
continue | |
if model == "owl": | |
label = text_queries[label.cpu().item()] | |
result_labels.append((box, label)) | |
elif model == "dino": | |
if label != "": | |
result_labels.append((box, label)) | |
return result_labels | |
def query_image(img, text_queries, owl_threshold, dino_threshold): | |
text_queries = text_queries | |
text_queries = text_queries.split(",") | |
owl_output = infer(img, text_queries, owl_threshold, "owl") | |
dino_output = infer(img, text_queries, dino_threshold, "dino") | |
return (img, owl_output), (img, dino_output) | |
owl_threshold = gr.Slider(0, 1, value=0.16, label="OWL Threshold") | |
dino_threshold = gr.Slider(0, 1, value=0.12, label="Grounding DINO Threshold") | |
owl_output = gr.AnnotatedImage(label="OWL Output") | |
dino_output = gr.AnnotatedImage(label="Grounding DINO Output") | |
demo = gr.Interface( | |
query_image, | |
inputs=[gr.Image(label="Input Image"), gr.Textbox(label="Candidate Labels"), owl_threshold, dino_threshold], | |
outputs=[owl_output, dino_output], | |
title="OWLv2 β Grounding DINO", | |
description="Compare two state-of-the-art zero-shot object detection models [OWLv2](https://huggingface.co/google/owlv2-base-patch16) and [Grounding DINO](https://huggingface.co/IDEA-Research/grounding-dino-base) in this Space. Simply enter an image and the objects you want to find with comma, or try one of the examples. Play with the threshold to filter out low confidence predictions in each model.", | |
examples=[["./bee.jpg", "bee, flower", 0.16, 0.12], ["./cats.png", "cat, fishnet", 0.16, 0.12]] | |
) | |
demo.launch(debug=True) |