EVACLIP / app.py
merve's picture
merve HF staff
Update app.py
c71394c verified
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer, AutoModel
import torchvision.transforms as T
import torch.nn.functional as F
from PIL import Image, ImageFile
import requests
import torch
import numpy as np
import gradio as gr
import spaces
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_name_or_path = "BAAI/EVA-CLIP-8B"
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
model = AutoModel.from_pretrained(
model_name_or_path,
torch_dtype=torch.bfloat16,
trust_remote_code=True).to(device).eval()
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path)
clip_checkpoint = "openai/clip-vit-base-patch16"
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification", device=device)
def infer_evaclip(image, captions):
captions = captions.split(",")
input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids.to(device)
input_pixels = processor(images=image, return_tensors="pt", padding=True).pixel_values.to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(input_pixels)
text_features = model.encode_text(input_ids)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
label_probs = label_probs.cpu().numpy().tolist()[0]
print(captions)
print(label_probs)
return {captions[i]: label_probs[i] for i in range(len(captions))}
def clip_inference(image, labels):
candidate_labels = [label.lstrip(" ") for label in labels.split(",")]
clip_out = clip_detector(image, candidate_labels=candidate_labels)
return {out["label"]: float(out["score"]) for out in clip_out}
@spaces.GPU
def infer(image, labels):
clip_out = clip_inference(image, labels)
evaclip_out = infer_evaclip(image, labels)
return clip_out, evaclip_out
with gr.Blocks() as demo:
gr.Markdown("# EVACLIP vs CLIP πŸ’₯ ")
gr.Markdown("[EVACLIP](https://huggingface.co/BAAI/EVA-CLIP-8B) is CLIP scaled to the moon! πŸ”₯")
gr.Markdown("It's a state-of-the-art zero-shot image classification model, which is also outperforming predecessors on text-image retrieval and linear probing.")
gr.Markdown("In this demo, compare EVACLIP outputs to CLIP outputs ✨")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
text_input = gr.Textbox(label="Input a list of labels")
run_button = gr.Button("Run", visible=True)
with gr.Column():
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3)
evaclip_output = gr.Label(label = "EVA-CLIP Output", num_top_classes=3)
examples = [["./cat.png", "cat on a table, cat on a tree"]]
gr.Examples(
examples = examples,
inputs=[image_input, text_input],
outputs=[clip_output,
evaclip_output],
fn=infer,
cache_examples=True
)
run_button.click(fn=infer,
inputs=[image_input, text_input],
outputs=[clip_output,
evaclip_output])
demo.launch()