pyramid-flow / pyramid_dit /pyramid_dit_for_video_gen_pipeline.py
multimodalart's picture
Upload 33 files
f0533a5 verified
import torch
import os
import sys
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
import numpy as np
import math
import random
import PIL
from PIL import Image
from tqdm import tqdm
from torchvision import transforms
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Union
from accelerate import Accelerator
from diffusion_schedulers import PyramidFlowMatchEulerDiscreteScheduler
from video_vae.modeling_causal_vae import CausalVideoVAE
from trainer_misc import (
all_to_all,
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_group_rank,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
get_rank,
)
from .modeling_pyramid_mmdit import PyramidDiffusionMMDiT
from .modeling_text_encoder import SD3TextEncoderWithMask
def compute_density_for_timestep_sampling(
weighting_scheme: str, batch_size: int, logit_mean: float = None, logit_std: float = None, mode_scale: float = None
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
class PyramidDiTForVideoGeneration:
"""
The pyramid dit for both image and video generation, The running class wrapper
This class is mainly for fixed unit implementation: 1 + n + n + n
"""
def __init__(self, model_path, model_dtype='bf16', use_gradient_checkpointing=False, return_log=True,
model_variant="diffusion_transformer_768p", timestep_shift=1.0, stage_range=[0, 1/3, 2/3, 1],
sample_ratios=[1, 1, 1], scheduler_gamma=1/3, use_mixed_training=False, use_flash_attn=False,
load_text_encoder=True, load_vae=True, max_temporal_length=31, frame_per_unit=1, use_temporal_causal=True,
corrupt_ratio=1/3, interp_condition_pos=True, stages=[1, 2, 4], **kwargs,
):
super().__init__()
if model_dtype == 'bf16':
torch_dtype = torch.bfloat16
elif model_dtype == 'fp16':
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
self.stages = stages
self.sample_ratios = sample_ratios
self.corrupt_ratio = corrupt_ratio
dit_path = os.path.join(model_path, model_variant)
# The dit
if use_mixed_training:
print("using mixed precision training, do not explicitly casting models")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
else:
print("using half precision")
self.dit = PyramidDiffusionMMDiT.from_pretrained(
dit_path, torch_dtype=torch_dtype,
use_gradient_checkpointing=use_gradient_checkpointing,
use_flash_attn=use_flash_attn, use_t5_mask=True,
add_temp_pos_embed=True, temp_pos_embed_type='rope',
use_temporal_causal=use_temporal_causal, interp_condition_pos=interp_condition_pos,
)
# The text encoder
if load_text_encoder:
self.text_encoder = SD3TextEncoderWithMask(model_path, torch_dtype=torch_dtype)
else:
self.text_encoder = None
# The base video vae decoder
if load_vae:
self.vae = CausalVideoVAE.from_pretrained(os.path.join(model_path, 'causal_video_vae'), torch_dtype=torch_dtype, interpolate=False)
# Freeze vae
for parameter in self.vae.parameters():
parameter.requires_grad = False
else:
self.vae = None
# For the image latent
self.vae_shift_factor = 0.1490
self.vae_scale_factor = 1 / 1.8415
# For the video latent
self.vae_video_shift_factor = -0.2343
self.vae_video_scale_factor = 1 / 3.0986
self.downsample = 8
# Configure the video training hyper-parameters
# The video sequence: one frame + N * unit
self.frame_per_unit = frame_per_unit
self.max_temporal_length = max_temporal_length
assert (max_temporal_length - 1) % frame_per_unit == 0, "The frame number should be divided by the frame number per unit"
self.num_units_per_video = 1 + ((max_temporal_length - 1) // frame_per_unit) + int(sum(sample_ratios))
self.scheduler = PyramidFlowMatchEulerDiscreteScheduler(
shift=timestep_shift, stages=len(self.stages),
stage_range=stage_range, gamma=scheduler_gamma,
)
print(f"The start sigmas and end sigmas of each stage is Start: {self.scheduler.start_sigmas}, End: {self.scheduler.end_sigmas}, Ori_start: {self.scheduler.ori_start_sigmas}")
self.cfg_rate = 0.1
self.return_log = return_log
self.use_flash_attn = use_flash_attn
def load_checkpoint(self, checkpoint_path, model_key='model', **kwargs):
checkpoint = torch.load(checkpoint_path, map_location='cpu')
dit_checkpoint = OrderedDict()
for key in checkpoint:
if key.startswith('vae') or key.startswith('text_encoder'):
continue
if key.startswith('dit'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
dit_checkpoint[new_key] = checkpoint[key]
else:
dit_checkpoint[key] = checkpoint[key]
load_result = self.dit.load_state_dict(dit_checkpoint, strict=True)
print(f"Load checkpoint from {checkpoint_path}, load result: {load_result}")
def load_vae_checkpoint(self, vae_checkpoint_path, model_key='model'):
checkpoint = torch.load(vae_checkpoint_path, map_location='cpu')
checkpoint = checkpoint[model_key]
loaded_checkpoint = OrderedDict()
for key in checkpoint.keys():
if key.startswith('vae.'):
new_key = key.split('.')
new_key = '.'.join(new_key[1:])
loaded_checkpoint[new_key] = checkpoint[key]
load_result = self.vae.load_state_dict(loaded_checkpoint)
print(f"Load the VAE from {vae_checkpoint_path}, load result: {load_result}")
@torch.no_grad()
def get_pyramid_latent(self, x, stage_num):
# x is the origin vae latent
vae_latent_list = []
vae_latent_list.append(x)
temp, height, width = x.shape[-3], x.shape[-2], x.shape[-1]
for _ in range(stage_num):
height //= 2
width //= 2
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = torch.nn.functional.interpolate(x, size=(height, width), mode='bilinear')
x = rearrange(x, '(b t) c h w -> b c t h w', t=temp)
vae_latent_list.append(x)
vae_latent_list = list(reversed(vae_latent_list))
return vae_latent_list
def prepare_latents(
self,
batch_size,
num_channels_latents,
temp,
height,
width,
dtype,
device,
generator,
):
shape = (
batch_size,
num_channels_latents,
int(temp),
int(height) // self.downsample,
int(width) // self.downsample,
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
def sample_block_noise(self, bs, ch, temp, height, width):
gamma = self.scheduler.config.gamma
dist = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(4), torch.eye(4) * (1 + gamma) - torch.ones(4, 4) * gamma)
block_number = bs * ch * temp * (height // 2) * (width // 2)
noise = torch.stack([dist.sample() for _ in range(block_number)]) # [block number, 4]
noise = rearrange(noise, '(b c t h w) (p q) -> b c t (h p) (w q)',b=bs,c=ch,t=temp,h=height//2,w=width//2,p=2,q=2)
return noise
@torch.no_grad()
def generate_one_unit(
self,
latents,
past_conditions, # List of past conditions, contains the conditions of each stage
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
temp,
device,
dtype,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
is_first_frame: bool = False,
):
stages = self.stages
intermed_latents = []
for i_s in range(len(stages)):
self.scheduler.set_timesteps(num_inference_steps[i_s], i_s, device=device)
timesteps = self.scheduler.timesteps
if i_s > 0:
height *= 2; width *= 2
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
latents = F.interpolate(latents, size=(height, width), mode='nearest')
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
# Fix the stage
ori_sigma = 1 - self.scheduler.ori_start_sigmas[i_s] # the original coeff of signal
gamma = self.scheduler.config.gamma
alpha = 1 / (math.sqrt(1 + (1 / gamma)) * (1 - ori_sigma) + ori_sigma)
beta = alpha * (1 - ori_sigma) / math.sqrt(gamma)
bs, ch, temp, height, width = latents.shape
noise = self.sample_block_noise(bs, ch, temp, height, width)
noise = noise.to(device=device, dtype=dtype)
latents = alpha * latents + beta * noise # To fix the block artifact
for idx, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
latent_model_input = past_conditions[i_s] + [latent_model_input]
noise_pred = self.dit(
sample=[latent_model_input],
timestep_ratio=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
)
noise_pred = noise_pred[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
if is_first_frame:
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_uncond + self.video_guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
model_output=noise_pred,
timestep=timestep,
sample=latents,
generator=generator,
).prev_sample
intermed_latents.append(latents)
return intermed_latents
@torch.no_grad()
def generate_i2v(
self,
prompt: Union[str, List[str]] = '',
input_image: PIL.Image = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 4.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
):
device = self.device
dtype = self.dtype
width = input_image.width
height = input_image.height
assert temp % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if use_linear_guidance:
max_guidance_scale = guidance_scale
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp+1)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# Create the initial random noise
num_channels_latents = self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = temp // self.frame_per_unit
stages = self.stages
# encode the image latents
image_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
])
input_image_tensor = image_transform(input_image).unsqueeze(0).unsqueeze(2) # [b c 1 h w]
input_image_latent = (self.vae.encode(input_image_tensor.to(device)).latent_dist.sample() - self.vae_shift_factor) * self.vae_scale_factor # [b c 1 h w]
generated_latents_list = [input_image_latent] # The generated results
last_generated_latents = input_image_latent
for unit_index in tqdm(range(1, num_units + 1)):
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-self.frame_per_unit:]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:,(unit_index - 1) * self.frame_per_unit:unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
image = self.decode_latent(generated_latents, save_memory=save_memory)
return image
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
temp: int = 1,
num_inference_steps: Optional[Union[int, List[int]]] = 28,
video_num_inference_steps: Optional[Union[int, List[int]]] = 28,
guidance_scale: float = 7.0,
video_guidance_scale: float = 7.0,
min_guidance_scale: float = 2.0,
use_linear_guidance: bool = False,
alpha: float = 0.5,
negative_prompt: Optional[Union[str, List[str]]]="cartoon style, worst quality, low quality, blurry, absolute black, absolute white, low res, extra limbs, extra digits, misplaced objects, mutated anatomy, monochrome, horror",
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
save_memory: bool = True,
):
device = self.device
dtype = self.dtype
assert (temp - 1) % self.frame_per_unit == 0, "The frames should be divided by frame_per unit"
if isinstance(prompt, str):
batch_size = 1
prompt = prompt + ", hyper quality, Ultra HD, 8K" # adding this prompt to improve aesthetics
else:
assert isinstance(prompt, list)
batch_size = len(prompt)
prompt = [_ + ", hyper quality, Ultra HD, 8K" for _ in prompt]
if isinstance(num_inference_steps, int):
num_inference_steps = [num_inference_steps] * len(self.stages)
if isinstance(video_num_inference_steps, int):
video_num_inference_steps = [video_num_inference_steps] * len(self.stages)
negative_prompt = negative_prompt or ""
# Get the text embeddings
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.text_encoder(prompt, device)
negative_prompt_embeds, negative_prompt_attention_mask, negative_pooled_prompt_embeds = self.text_encoder(negative_prompt, device)
if use_linear_guidance:
max_guidance_scale = guidance_scale
# guidance_scale_list = torch.linspace(max_guidance_scale, min_guidance_scale, temp).tolist()
guidance_scale_list = [max(max_guidance_scale - alpha * t_, min_guidance_scale) for t_ in range(temp)]
print(guidance_scale_list)
self._guidance_scale = guidance_scale
self._video_guidance_scale = video_guidance_scale
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
# Create the initial random noise
num_channels_latents = self.dit.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
temp,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
temp, height, width = latents.shape[-3], latents.shape[-2], latents.shape[-1]
latents = rearrange(latents, 'b c t h w -> (b t) c h w')
# by defalut, we needs to start from the block noise
for _ in range(len(self.stages)-1):
height //= 2;width //= 2
latents = F.interpolate(latents, size=(height, width), mode='bilinear') * 2
latents = rearrange(latents, '(b t) c h w -> b c t h w', t=temp)
num_units = 1 + (temp - 1) // self.frame_per_unit
stages = self.stages
generated_latents_list = [] # The generated results
last_generated_latents = None
for unit_index in tqdm(range(num_units)):
if use_linear_guidance:
self._guidance_scale = guidance_scale_list[unit_index]
self._video_guidance_scale = guidance_scale_list[unit_index]
if unit_index == 0:
past_condition_latents = [[] for _ in range(len(stages))]
intermed_latents = self.generate_one_unit(
latents[:,:,:1],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
num_inference_steps,
height,
width,
1,
device,
dtype,
generator,
is_first_frame=True,
)
else:
# prepare the condition latents
past_condition_latents = []
clean_latents_list = self.get_pyramid_latent(torch.cat(generated_latents_list, dim=2), len(stages) - 1)
for i_s in range(len(stages)):
last_cond_latent = clean_latents_list[i_s][:,:,-(self.frame_per_unit):]
stage_input = [torch.cat([last_cond_latent] * 2) if self.do_classifier_free_guidance else last_cond_latent]
# pad the past clean latents
cur_unit_num = unit_index
cur_stage = i_s
cur_unit_ptx = 1
while cur_unit_ptx < cur_unit_num:
cur_stage = max(cur_stage - 1, 0)
if cur_stage == 0:
break
cur_unit_ptx += 1
cond_latents = clean_latents_list[cur_stage][:, :, -(cur_unit_ptx * self.frame_per_unit) : -((cur_unit_ptx - 1) * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
if cur_stage == 0 and cur_unit_ptx < cur_unit_num:
cond_latents = clean_latents_list[0][:, :, :-(cur_unit_ptx * self.frame_per_unit)]
stage_input.append(torch.cat([cond_latents] * 2) if self.do_classifier_free_guidance else cond_latents)
stage_input = list(reversed(stage_input))
past_condition_latents.append(stage_input)
intermed_latents = self.generate_one_unit(
latents[:,:, 1 + (unit_index - 1) * self.frame_per_unit:1 + unit_index * self.frame_per_unit],
past_condition_latents,
prompt_embeds,
prompt_attention_mask,
pooled_prompt_embeds,
video_num_inference_steps,
height,
width,
self.frame_per_unit,
device,
dtype,
generator,
is_first_frame=False,
)
generated_latents_list.append(intermed_latents[-1])
last_generated_latents = intermed_latents
generated_latents = torch.cat(generated_latents_list, dim=2)
if output_type == "latent":
image = generated_latents
else:
image = self.decode_latent(generated_latents, save_memory=save_memory)
return image
def decode_latent(self, latents, save_memory=True):
if latents.shape[2] == 1:
latents = (latents / self.vae_scale_factor) + self.vae_shift_factor
else:
latents[:, :, :1] = (latents[:, :, :1] / self.vae_scale_factor) + self.vae_shift_factor
latents[:, :, 1:] = (latents[:, :, 1:] / self.vae_video_scale_factor) + self.vae_video_shift_factor
if save_memory:
# reducing the tile size and temporal chunk window size
image = self.vae.decode(latents, temporal_chunk=True, window_size=1, tile_sample_min_size=256).sample
else:
image = self.vae.decode(latents, temporal_chunk=True, window_size=2, tile_sample_min_size=512).sample
image = image.float()
image = (image / 2 + 0.5).clamp(0, 1)
image = rearrange(image, "B C T H W -> (B T) C H W")
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = self.numpy_to_pil(image)
return image
@staticmethod
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
@property
def device(self):
return next(self.dit.parameters()).device
@property
def dtype(self):
return next(self.dit.parameters()).dtype
@property
def guidance_scale(self):
return self._guidance_scale
@property
def video_guidance_scale(self):
return self._video_guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 0