import torch import numpy as np from machinedesign.autoencoder.interface import load from keras.models import Model torch.use_deterministic_algorithms(True) model = torch.load("mnist_deepconvae/model.th") model_keras = load("/home/mehdi/work/code/out_of_class/ae/mnist") print(model_keras.layers[8]) m = Model(model_keras.inputs, model_keras.layers[8].output) X = torch.rand(1,1,28,28) with torch.no_grad(): # X1 = model.sparsify(model.encode(X)) X1 = model(X) X2 = model_keras.predict(X) X2 = torch.from_numpy(X2) print(torch.abs(X1-X2).sum()) # for i in range(128): # print(i, torch.abs(X1[0,i]-X2[0,i]).sum()) # print(X1[0,i, 0, :]) # print(X2[0,i,0, :])