import math import torch import torchvision import gradio as gr from PIL import Image from cli import iterative_refinement from viz import grid_of_images_default models = { "ConvAE": torch.load("convae.th", map_location="cpu"), "Deep ConvAE": torch.load("deep_convae.th", map_location="cpu"), "Dense K-Sparse": torch.load("fc_sparse.th", map_location="cpu"), } def gen(md, model_name, seed, nb_iter, nb_samples, width, height, nb_active, only_last, black_bg, binarize, binarize_threshold): torch.manual_seed(int(seed)) bs = 64 model = models[model_name] if model_name == "Dense K-Sparse": model.nb_active = nb_active samples = iterative_refinement( model, nb_iter=int(nb_iter), nb_examples=int(nb_samples), w=int(width), h=int(height), c=1, batch_size=bs, binarize_threshold=binarize_threshold if binarize else None, ) if not black_bg: samples = 1 - samples if only_last: s = int(math.sqrt((nb_samples))) grid = grid_of_images_default(samples[-1].numpy(), shape=(s, s)) else: grid = grid_of_images_default(samples.reshape((samples.shape[0]*samples.shape[1], int(height), int(width), 1)).numpy(), shape=(samples.shape[0], samples.shape[1])) grid = (grid*255).astype("uint8") return Image.fromarray(grid) text = """ This interface supports generation of samples from: - ConvAE model (from [`Digits that are not: Generating new types through deep neural nets`](https://arxiv.org/pdf/1606.04345.pdf)) - DeepConvAE model (from [here](https://tel.archives-ouvertes.fr/tel-01838272/file/75406_CHERTI_2018_diffusion.pdf), Section 10.1 with `L=3`) - Dense K-Sparse model (from [`Out-of-class novelty generation`](https://openreview.net/forum?id=r1QXQkSYg)) These models were trained on MNIST only (digits), but were found to generate new kinds of symbols, see the references for more details. NB: `nb_active` is only used for the Dense K-Sparse, specifying nb of activations to keep in the last layer. Check for more details. """ iface = gr.Interface( fn=gen, inputs=[ gr.Markdown(text), gr.Dropdown(list(models.keys()), value="Deep ConvAE"), gr.Number(value=0), gr.Number(value=25), gr.Number(value=1), gr.Number(value=28), gr.Number(value=28),gr.Slider(minimum=0,maximum=800, value=800, step=1), gr.Checkbox(value=False, label="Only show last iteration"), gr.Checkbox(value=True, label="Black background"), gr.Checkbox(value=False, label="binarize"), gr.Number(value=0.5) ], outputs="image" ) iface.launch()