import pprint import re from huggingface_hub import snapshot_download, delete_inference_endpoint from src.backend.inference_endpoint import create_endpoint from src.backend.manage_requests import check_completed_evals, \ get_eval_requests, set_eval_request, PENDING_STATUS, FINISHED_STATUS, \ FAILED_STATUS, RUNNING_STATUS from src.backend.run_toxicity_eval import compute_results from src.backend.sort_queue import sort_models_by_priority from src.envs import (REQUESTS_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, API, TOKEN) from src.logging import setup_logger logger = setup_logger(__name__) pp = pprint.PrettyPrinter(width=80) snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) snapshot_download(repo_id=REQUESTS_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN) def run_auto_eval(): # pull the eval dataset from the hub and parse any eval requests # check completed evals and set them to finished check_completed_evals( api=API, completed_status=FINISHED_STATUS, failed_status=FAILED_STATUS, hf_repo=REQUESTS_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND ) # Get all eval requests that are PENDING eval_requests = get_eval_requests(hf_repo=REQUESTS_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) # Sort the evals by priority (first submitted, first run) eval_requests = sort_models_by_priority(api=API, models=eval_requests) logger.info( f"Found {len(eval_requests)} {PENDING_STATUS} eval requests") if len(eval_requests) == 0: return eval_request = eval_requests[0] logger.info(pp.pformat(eval_request)) set_eval_request( api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=REQUESTS_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) logger.info( f'Starting Evaluation of {eval_request.json_filepath} on Inference endpoints') endpoint_name = _make_endpoint_name(eval_request) endpoint_url = create_endpoint(endpoint_name, eval_request.model) logger.info("Created an endpoint url at %s" % endpoint_url) results = compute_results(endpoint_url, eval_request) logger.info("FINISHED!") logger.info(results) logger.info(f'Completed Evaluation of {eval_request.json_filepath}') set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=REQUESTS_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND, ) # Delete endpoint when we're done. delete_inference_endpoint(endpoint_name) def _make_endpoint_name(eval_request): model_repository = eval_request.model # Naming convention for endpoints endpoint_name_tmp = re.sub("[/.]", "-", model_repository.lower()) + "-toxicity-eval" # Endpoints apparently can't have more than 32 characters. endpoint_name = endpoint_name_tmp[:32] return endpoint_name if __name__ == "__main__": run_auto_eval()