from shared import START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE from utils import re_findall from shared import OutputArguments from typing import Optional from segment import ( generate_segments, extract_segment, SAFETY_TOKENS, CustomTokens, word_start, word_end, SegmentationArguments ) import preprocess from errors import TranscriptError from model import get_classifier_vectorizer from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser ) from transformers.trainer_utils import get_last_checkpoint from dataclasses import dataclass, field from shared import device import logging import re def seconds_to_time(seconds, remove_leading_zeroes=False): fractional = round(seconds % 1, 3) fractional = '' if fractional == 0 else str(fractional)[1:] h, remainder = divmod(abs(int(seconds)), 3600) m, s = divmod(remainder, 60) hms = f'{h:02}:{m:02}:{s:02}' if remove_leading_zeroes: hms = re.sub(r'^0(?:0:0?)?', '', hms) return f"{'-' if seconds < 0 else ''}{hms}{fractional}" @dataclass class TrainingOutputArguments: model_path: str = field( default=None, metadata={ 'help': 'Path to pretrained model used for prediction'} ) output_dir: Optional[str] = OutputArguments.__dataclass_fields__[ 'output_dir'] def __post_init__(self): if self.model_path is not None: return last_checkpoint = get_last_checkpoint(self.output_dir) if last_checkpoint is not None: self.model_path = last_checkpoint else: raise Exception( 'Unable to find model, explicitly set `--model_path`') @dataclass class PredictArguments(TrainingOutputArguments): video_id: str = field( default=None, metadata={ 'help': 'Video to predict sponsorship segments for'} ) _SEGMENT_START = START_SEGMENT_TEMPLATE.format(r'(?P\w+)') _SEGMENT_END = END_SEGMENT_TEMPLATE.format(r'\w+') SEGMENT_MATCH_RE = fr'{_SEGMENT_START}\s*(?P.*?)\s*(?:{_SEGMENT_END}|$)' MATCH_WINDOW = 25 # Increase for accuracy, but takes longer: O(n^3) MERGE_TIME_WITHIN = 8 # Merge predictions if they are within x seconds @dataclass(frozen=True, eq=True) class ClassifierArguments: classifier_dir: Optional[str] = field( default='classifiers', metadata={ 'help': 'The directory that contains the classifier and vectorizer.' } ) classifier_file: Optional[str] = field( default='classifier.pickle', metadata={ 'help': 'The name of the classifier' } ) vectorizer_file: Optional[str] = field( default='vectorizer.pickle', metadata={ 'help': 'The name of the vectorizer' } ) min_probability: float = field( default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'}) def filter_and_add_probabilities(predictions, classifier_args): # classifier, vectorizer, """Use classifier to filter predictions""" if not predictions: return predictions classifier, vectorizer = get_classifier_vectorizer(classifier_args) transformed_segments = vectorizer.transform([ preprocess.clean_text(' '.join([x['text'] for x in pred['words']])) for pred in predictions ]) probabilities = classifier.predict_proba(transformed_segments) # Transformer sometimes says segment is of another category, so we # update category and probabilities if classifier is confident it is another category filtered_predictions = [] for prediction, probabilities in zip(predictions, probabilities): predicted_probabilities = {k: v for k, v in zip(CATEGORIES, probabilities)} # Get best category + probability classifier_category = max( predicted_probabilities, key=predicted_probabilities.get) classifier_probability = predicted_probabilities[classifier_category] if classifier_category is None and classifier_probability > classifier_args.min_probability: continue # Ignore if (prediction['category'] not in predicted_probabilities) \ or (classifier_category is not None and classifier_probability > 0.5): # TODO make param # Unknown category or we are confident enough to overrule, # so change category to what was predicted by classifier prediction['category'] = classifier_category prediction['probability'] = predicted_probabilities[prediction['category']] # TODO add probabilities, but remove None and normalise rest prediction['probabilities'] = predicted_probabilities # if prediction['probability'] < classifier_args.min_probability: # continue filtered_predictions.append(prediction) return filtered_predictions def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier_args=None): # Allow words to be passed in so that we don't have to get the words if we already have them if words is None: words = preprocess.get_words(video_id) if not words: raise TranscriptError('Unable to retrieve transcript') segments = generate_segments( words, tokenizer, segmentation_args ) predictions = segments_to_predictions(segments, model, tokenizer) # Add words back to time_ranges for prediction in predictions: # Stores words in the range prediction['words'] = extract_segment( words, prediction['start'], prediction['end']) # TODO add back if classifier_args is not None: predictions = filter_and_add_probabilities(predictions, classifier_args) return predictions def greedy_match(list, sublist): # Return index and length of longest matching sublist best_i = -1 best_j = -1 best_k = 0 for i in range(len(list)): # Start position in main list for j in range(len(sublist)): # Start position in sublist for k in range(len(sublist)-j, 0, -1): # Width of sublist window if k > best_k and list[i:i+k] == sublist[j:j+k]: best_i, best_j, best_k = i, j, k break # Since window size decreases return best_i, best_j, best_k CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION'] def predict_sponsor_text(text, model, tokenizer): """Given a body of text, predict the words which are part of the sponsor""" input_ids = tokenizer( f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(device()) # Can't be longer than input length + SAFETY_TOKENS or model input dim max_out_len = min(len(input_ids[0]) + SAFETY_TOKENS, model.model_dim) outputs = model.generate(input_ids, max_length=max_out_len) return tokenizer.decode(outputs[0], skip_special_tokens=True) def predict_sponsor_matches(text, model, tokenizer): sponsorship_text = predict_sponsor_text(text, model, tokenizer) if CustomTokens.NO_SEGMENT.value in sponsorship_text: return [] return re_findall(SEGMENT_MATCH_RE, sponsorship_text) def segments_to_predictions(segments, model, tokenizer): predicted_time_ranges = [] # TODO pass to model simultaneously, not in for loop # use 2d array for input ids for segment in segments: cleaned_batch = [preprocess.clean_text( word['text']) for word in segment] batch_text = ' '.join(cleaned_batch) matches = predict_sponsor_matches(batch_text, model, tokenizer) for match in matches: matched_text = match['text'].split() # TODO skip if too short i1, j1, k1 = greedy_match( cleaned_batch, matched_text[:MATCH_WINDOW]) i2, j2, k2 = greedy_match( cleaned_batch, matched_text[-MATCH_WINDOW:]) extracted_words = segment[i1:i2+k2] if not extracted_words: continue predicted_time_ranges.append({ 'start': word_start(extracted_words[0]), 'end': word_end(extracted_words[-1]), 'category': match['category'] }) # Necessary to sort matches by start time predicted_time_ranges.sort(key=word_start) # Merge overlapping predictions and sponsorships that are close together # Caused by model having max input size prev_prediction = None final_predicted_time_ranges = [] for range in predicted_time_ranges: start_time = range['start'] end_time = range['end'] if prev_prediction is not None and \ (start_time <= prev_prediction['end'] <= end_time or # Merge overlapping segments (range['category'] == prev_prediction['category'] # Merge disconnected segments if same category and within threshold and start_time - prev_prediction['end'] <= MERGE_TIME_WITHIN)): # Extend last prediction range final_predicted_time_ranges[-1]['end'] = end_time else: # No overlap, is a new prediction final_predicted_time_ranges.append({ 'start': start_time, 'end': end_time, 'category': range['category'] }) prev_prediction = range return final_predicted_time_ranges def main(): # Test on unseen data logging.getLogger().setLevel(logging.DEBUG) hf_parser = HfArgumentParser(( PredictArguments, SegmentationArguments, ClassifierArguments )) predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses() if predict_args.video_id is None: print('No video ID supplied. Use `--video_id`.') return model = AutoModelForSeq2SeqLM.from_pretrained(predict_args.model_path) model.to(device()) tokenizer = AutoTokenizer.from_pretrained(predict_args.model_path) predict_args.video_id = predict_args.video_id.strip() predictions = predict(predict_args.video_id, model, tokenizer, segmentation_args, classifier_args=classifier_args) video_url = f'https://www.youtube.com/watch?v={predict_args.video_id}' if not predictions: print('No predictions found for', video_url) return print(len(predictions), 'predictions found for', video_url) for index, prediction in enumerate(predictions, start=1): print(f'Prediction #{index}:') print('Text: "', ' '.join([w['text'] for w in prediction['words']]), '"', sep='') print('Time:', seconds_to_time( prediction['start']), '\u2192', seconds_to_time(prediction['end'])) print('Probability:', prediction.get('probability')) print('Category:', prediction.get('category')) print() if __name__ == '__main__': main()