Joshua Lochner
Use classifier category if transformer generates unknown category
ad7fc61
from shared import START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE
from utils import re_findall
from shared import OutputArguments
from typing import Optional
from segment import (
generate_segments,
extract_segment,
SAFETY_TOKENS,
CustomTokens,
word_start,
word_end,
SegmentationArguments
)
import preprocess
from errors import TranscriptError
from model import get_classifier_vectorizer
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
HfArgumentParser
)
from transformers.trainer_utils import get_last_checkpoint
from dataclasses import dataclass, field
from shared import device
import logging
import re
def seconds_to_time(seconds, remove_leading_zeroes=False):
fractional = round(seconds % 1, 3)
fractional = '' if fractional == 0 else str(fractional)[1:]
h, remainder = divmod(abs(int(seconds)), 3600)
m, s = divmod(remainder, 60)
hms = f'{h:02}:{m:02}:{s:02}'
if remove_leading_zeroes:
hms = re.sub(r'^0(?:0:0?)?', '', hms)
return f"{'-' if seconds < 0 else ''}{hms}{fractional}"
@dataclass
class TrainingOutputArguments:
model_path: str = field(
default=None,
metadata={
'help': 'Path to pretrained model used for prediction'}
)
output_dir: Optional[str] = OutputArguments.__dataclass_fields__[
'output_dir']
def __post_init__(self):
if self.model_path is not None:
return
last_checkpoint = get_last_checkpoint(self.output_dir)
if last_checkpoint is not None:
self.model_path = last_checkpoint
else:
raise Exception(
'Unable to find model, explicitly set `--model_path`')
@dataclass
class PredictArguments(TrainingOutputArguments):
video_id: str = field(
default=None,
metadata={
'help': 'Video to predict sponsorship segments for'}
)
_SEGMENT_START = START_SEGMENT_TEMPLATE.format(r'(?P<category>\w+)')
_SEGMENT_END = END_SEGMENT_TEMPLATE.format(r'\w+')
SEGMENT_MATCH_RE = fr'{_SEGMENT_START}\s*(?P<text>.*?)\s*(?:{_SEGMENT_END}|$)'
MATCH_WINDOW = 25 # Increase for accuracy, but takes longer: O(n^3)
MERGE_TIME_WITHIN = 8 # Merge predictions if they are within x seconds
@dataclass(frozen=True, eq=True)
class ClassifierArguments:
classifier_dir: Optional[str] = field(
default='classifiers',
metadata={
'help': 'The directory that contains the classifier and vectorizer.'
}
)
classifier_file: Optional[str] = field(
default='classifier.pickle',
metadata={
'help': 'The name of the classifier'
}
)
vectorizer_file: Optional[str] = field(
default='vectorizer.pickle',
metadata={
'help': 'The name of the vectorizer'
}
)
min_probability: float = field(
default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'})
def filter_and_add_probabilities(predictions, classifier_args): # classifier, vectorizer,
"""Use classifier to filter predictions"""
if not predictions:
return predictions
classifier, vectorizer = get_classifier_vectorizer(classifier_args)
transformed_segments = vectorizer.transform([
preprocess.clean_text(' '.join([x['text'] for x in pred['words']]))
for pred in predictions
])
probabilities = classifier.predict_proba(transformed_segments)
# Transformer sometimes says segment is of another category, so we
# update category and probabilities if classifier is confident it is another category
filtered_predictions = []
for prediction, probabilities in zip(predictions, probabilities):
predicted_probabilities = {k: v for k,
v in zip(CATEGORIES, probabilities)}
# Get best category + probability
classifier_category = max(
predicted_probabilities, key=predicted_probabilities.get)
classifier_probability = predicted_probabilities[classifier_category]
if classifier_category is None and classifier_probability > classifier_args.min_probability:
continue # Ignore
if (prediction['category'] not in predicted_probabilities) \
or (classifier_category is not None and classifier_probability > 0.5): # TODO make param
# Unknown category or we are confident enough to overrule,
# so change category to what was predicted by classifier
prediction['category'] = classifier_category
prediction['probability'] = predicted_probabilities[prediction['category']]
# TODO add probabilities, but remove None and normalise rest
prediction['probabilities'] = predicted_probabilities
# if prediction['probability'] < classifier_args.min_probability:
# continue
filtered_predictions.append(prediction)
return filtered_predictions
def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier_args=None):
# Allow words to be passed in so that we don't have to get the words if we already have them
if words is None:
words = preprocess.get_words(video_id)
if not words:
raise TranscriptError('Unable to retrieve transcript')
segments = generate_segments(
words,
tokenizer,
segmentation_args
)
predictions = segments_to_predictions(segments, model, tokenizer)
# Add words back to time_ranges
for prediction in predictions:
# Stores words in the range
prediction['words'] = extract_segment(
words, prediction['start'], prediction['end'])
# TODO add back
if classifier_args is not None:
predictions = filter_and_add_probabilities(predictions, classifier_args)
return predictions
def greedy_match(list, sublist):
# Return index and length of longest matching sublist
best_i = -1
best_j = -1
best_k = 0
for i in range(len(list)): # Start position in main list
for j in range(len(sublist)): # Start position in sublist
for k in range(len(sublist)-j, 0, -1): # Width of sublist window
if k > best_k and list[i:i+k] == sublist[j:j+k]:
best_i, best_j, best_k = i, j, k
break # Since window size decreases
return best_i, best_j, best_k
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
def predict_sponsor_text(text, model, tokenizer):
"""Given a body of text, predict the words which are part of the sponsor"""
input_ids = tokenizer(
f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(device())
# Can't be longer than input length + SAFETY_TOKENS or model input dim
max_out_len = min(len(input_ids[0]) + SAFETY_TOKENS, model.model_dim)
outputs = model.generate(input_ids, max_length=max_out_len)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def predict_sponsor_matches(text, model, tokenizer):
sponsorship_text = predict_sponsor_text(text, model, tokenizer)
if CustomTokens.NO_SEGMENT.value in sponsorship_text:
return []
return re_findall(SEGMENT_MATCH_RE, sponsorship_text)
def segments_to_predictions(segments, model, tokenizer):
predicted_time_ranges = []
# TODO pass to model simultaneously, not in for loop
# use 2d array for input ids
for segment in segments:
cleaned_batch = [preprocess.clean_text(
word['text']) for word in segment]
batch_text = ' '.join(cleaned_batch)
matches = predict_sponsor_matches(batch_text, model, tokenizer)
for match in matches:
matched_text = match['text'].split()
# TODO skip if too short
i1, j1, k1 = greedy_match(
cleaned_batch, matched_text[:MATCH_WINDOW])
i2, j2, k2 = greedy_match(
cleaned_batch, matched_text[-MATCH_WINDOW:])
extracted_words = segment[i1:i2+k2]
if not extracted_words:
continue
predicted_time_ranges.append({
'start': word_start(extracted_words[0]),
'end': word_end(extracted_words[-1]),
'category': match['category']
})
# Necessary to sort matches by start time
predicted_time_ranges.sort(key=word_start)
# Merge overlapping predictions and sponsorships that are close together
# Caused by model having max input size
prev_prediction = None
final_predicted_time_ranges = []
for range in predicted_time_ranges:
start_time = range['start']
end_time = range['end']
if prev_prediction is not None and \
(start_time <= prev_prediction['end'] <= end_time or # Merge overlapping segments
(range['category'] == prev_prediction['category'] # Merge disconnected segments if same category and within threshold
and start_time - prev_prediction['end'] <= MERGE_TIME_WITHIN)):
# Extend last prediction range
final_predicted_time_ranges[-1]['end'] = end_time
else: # No overlap, is a new prediction
final_predicted_time_ranges.append({
'start': start_time,
'end': end_time,
'category': range['category']
})
prev_prediction = range
return final_predicted_time_ranges
def main():
# Test on unseen data
logging.getLogger().setLevel(logging.DEBUG)
hf_parser = HfArgumentParser((
PredictArguments,
SegmentationArguments,
ClassifierArguments
))
predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
if predict_args.video_id is None:
print('No video ID supplied. Use `--video_id`.')
return
model = AutoModelForSeq2SeqLM.from_pretrained(predict_args.model_path)
model.to(device())
tokenizer = AutoTokenizer.from_pretrained(predict_args.model_path)
predict_args.video_id = predict_args.video_id.strip()
predictions = predict(predict_args.video_id, model, tokenizer,
segmentation_args, classifier_args=classifier_args)
video_url = f'https://www.youtube.com/watch?v={predict_args.video_id}'
if not predictions:
print('No predictions found for', video_url)
return
print(len(predictions), 'predictions found for', video_url)
for index, prediction in enumerate(predictions, start=1):
print(f'Prediction #{index}:')
print('Text: "',
' '.join([w['text'] for w in prediction['words']]), '"', sep='')
print('Time:', seconds_to_time(
prediction['start']), '\u2192', seconds_to_time(prediction['end']))
print('Probability:', prediction.get('probability'))
print('Category:', prediction.get('category'))
print()
if __name__ == '__main__':
main()