Joshua Lochner
Add compatibility for python 3.6+
7781f10
from functools import lru_cache
import pickle
import os
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default='google/t5-v1_1-small', # t5-small
metadata={
'help': 'Path to pretrained model or model identifier from huggingface.co/models'
}
)
# config_name: Optional[str] = field( # TODO remove?
# default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
# )
tokenizer_name: Optional[str] = field(
default=None, metadata={
'help': 'Pretrained tokenizer name or path if not the same as model_name'
}
)
cache_dir: Optional[str] = field(
default=None,
metadata={
'help': 'Where to store the pretrained models downloaded from huggingface.co'
},
)
use_fast_tokenizer: bool = field( # TODO remove?
default=True,
metadata={
'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'
},
)
model_revision: str = field( # TODO remove?
default='main',
metadata={
'help': 'The specific model version to use (can be a branch name, tag name or commit id).'
},
)
use_auth_token: bool = field(
default=False,
metadata={
'help': 'Will use the token generated when running `transformers-cli login` (necessary to use this script '
'with private models).'
},
)
resize_position_embeddings: Optional[bool] = field(
default=None,
metadata={
'help': "Whether to automatically resize the position embeddings if `max_source_length` exceeds the model's position embeddings."
},
)
@lru_cache(maxsize=None)
def get_classifier_vectorizer(classifier_args):
classifier_path = os.path.join(
classifier_args.classifier_dir, classifier_args.classifier_file)
with open(classifier_path, 'rb') as fp:
classifier = pickle.load(fp)
vectorizer_path = os.path.join(
classifier_args.classifier_dir, classifier_args.vectorizer_file)
with open(vectorizer_path, 'rb') as fp:
vectorizer = pickle.load(fp)
return classifier, vectorizer