|
import gradio as gr |
|
from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, StoppingCriteria |
|
import spaces |
|
import torch |
|
from PIL import Image |
|
|
|
models = { |
|
"Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True) |
|
} |
|
|
|
processors = { |
|
"Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True) |
|
} |
|
|
|
tokenizers = { |
|
"Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True, use_fast=False, legacy=False), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False), |
|
"Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False) |
|
} |
|
|
|
|
|
DESCRIPTION = "# [xGen-MM Demo](https://huggingface.co/collections/Salesforce/xgen-mm-1-models-662971d6cecbf3a7f80ecc2e)" |
|
|
|
|
|
def apply_prompt_template(prompt): |
|
s = ( |
|
'<|system|>\nA chat between a curious user and an artificial intelligence assistant. ' |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n" |
|
f'<|user|>\n<image>\n{prompt}<|end|>\n<|assistant|>\n' |
|
) |
|
return s |
|
|
|
|
|
class EosListStoppingCriteria(StoppingCriteria): |
|
def __init__(self, eos_sequence = [32007]): |
|
self.eos_sequence = eos_sequence |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
last_ids = input_ids[:,-len(self.eos_sequence):].tolist() |
|
return self.eos_sequence in last_ids |
|
|
|
|
|
@spaces.GPU |
|
def run_example(image, text_input=None, model_id="Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5"): |
|
model = models[model_id].to("cuda").eval() |
|
processor = processors[model_id] |
|
tokenizer = tokenizers[model_id] |
|
tokenizer = model.update_special_tokens(tokenizer) |
|
|
|
if model_id == "Salesforce/xgen-mm-phi3-mini-instruct-r-v1": |
|
image = Image.fromarray(image).convert("RGB") |
|
prompt = apply_prompt_template(text_input) |
|
language_inputs = tokenizer([prompt], return_tensors="pt") |
|
|
|
inputs = processor([image], return_tensors="pt", image_aspect_ratio='anyres') |
|
inputs.update(language_inputs) |
|
inputs = {name: tensor.cuda() for name, tensor in inputs.items()} |
|
|
|
generated_text = model.generate(**inputs, image_size=[image.size], |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, max_new_tokens=768, top_p=None, num_beams=1, |
|
stopping_criteria = [EosListStoppingCriteria()], |
|
) |
|
else: |
|
image_list = [] |
|
image_sizes = [] |
|
|
|
img = Image.fromarray(image).convert("RGB") |
|
image_list.append(processor([img], image_aspect_ratio='anyres')["pixel_values"].cuda()) |
|
image_sizes.append(img.size) |
|
|
|
inputs = { |
|
"pixel_values": [image_list] |
|
} |
|
prompt = apply_prompt_template(text_input) |
|
language_inputs = tokenizer([prompt], return_tensors="pt") |
|
inputs.update(language_inputs) |
|
|
|
for name, value in inputs.items(): |
|
if isinstance(value, torch.Tensor): |
|
inputs[name] = value.cuda() |
|
generated_text = model.generate(**inputs, image_size=[image_sizes], |
|
pad_token_id=tokenizer.pad_token_id, |
|
do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1, |
|
) |
|
|
|
prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True).split("<|end|>")[0] |
|
return prediction |
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="xGen-MM Input"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5") |
|
text_input = gr.Textbox(label="Question") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) |
|
|
|
demo.launch(debug=True) |