File size: 4,904 Bytes
778a9fa
 
98bffaf
 
 
778a9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb2663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import torch.nn as nn
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel


biases = False


class Pool2BN(nn.Module):
    def __init__(self, num_channels):
        super().__init__()
        self.bn = torch.nn.BatchNorm1d(num_channels * 2)

    def forward(self, x):
        avgp = torch.nn.functional.adaptive_avg_pool1d(x, 1)[:, :, 0]
        maxp = torch.nn.functional.adaptive_max_pool1d(x, 1)[:, :, 0]
        x = torch.cat((avgp, maxp), axis=1)
        x = self.bn(x)
        return x

class MLP(torch.nn.Module):
    def __init__(self, layer_sizes, biases=False, sigmoid=False, dropout=None):
        super().__init__()
        layers = []
        prev_size = layer_sizes[0]
        for i, s in enumerate(layer_sizes[1:]):
            if i != 0 and dropout is not None:
                layers.append(torch.nn.Dropout(dropout))

            layers.append(torch.nn.Linear(in_features=prev_size, out_features=s, bias=biases))
            if i != len(layer_sizes) - 2:
                if sigmoid:
                    # layers.append(torch.nn.Sigmoid())
                    layers.append(torch.nn.Tanh())
                else:
                    layers.append(torch.nn.ReLU())

                layers.append(torch.nn.BatchNorm1d(s))

            prev_size = s

        self.mlp = torch.nn.Sequential(*layers)

    def forward(self, x):

        return self.mlp(x)


class SimpleCNN(torch.nn.Module):
    def __init__(self, k, num_filters, sigmoid=False, additional_layer=False):
        super(SimpleCNN, self).__init__()
        self.sigmoid = sigmoid
        self.cnn = torch.nn.Conv1d(in_channels=4, out_channels=num_filters, kernel_size=k, bias=biases)

        self.additional_layer = additional_layer
        if additional_layer:
            self.bn = nn.BatchNorm1d(num_filters)
            # self.do = nn.Dropout(0.5)
            self.cnn2 = nn.Conv1d(in_channels=num_filters, out_channels=num_filters, kernel_size=1, bias=biases)

        self.post = Pool2BN(num_filters)

    def forward(self, x):
        x = self.cnn(x)
        x = (torch.tanh if self.sigmoid else torch.relu)(x)

        if self.additional_layer:
            x = self.bn(x)
            # x = self.do(x)
            x = self.cnn2(x)
            x = (torch.tanh if self.sigmoid else torch.relu)(x)

        x = self.post(x)
        #print(f'x shape at CNN output: {x.shape}')
        return x


class ResNet1dBlock(torch.nn.Module):
    def __init__(self, num_filters, k1, internal_filters, k2, dropout=None, dilation=None):
        super().__init__()

        self.init_do = torch.nn.Dropout(dropout) if dropout is not None else None
        self.bn1 = torch.nn.BatchNorm1d(num_filters)
        if dilation is None:
            dilation = 1

        self.cnn1 = torch.nn.Conv1d(in_channels=num_filters, out_channels=internal_filters, kernel_size=k1, bias=biases,
                                    dilation=dilation,
                                    padding=(k1 // 2) * dilation)

        self.bn2 = torch.nn.BatchNorm1d(internal_filters)
        self.cnn2 = torch.nn.Conv1d(in_channels=internal_filters, out_channels=num_filters, kernel_size=k2, bias=biases,
                                    padding=k2 // 2)

    def forward(self, x):
        x_orig = x

        x = self.bn1(x)
        x = torch.relu(x)
        if self.init_do is not None:
            x = self.init_do(x)

        x = self.cnn1(x)

        x = self.bn2(x)
        x = torch.relu(x)
        x = self.cnn2(x)

        return x + x_orig


class ResNet1d(torch.nn.Module):
    def __init__(self, num_filters, block_spec, dropout=None, dilation=None):
        super().__init__()

        blocks = [ResNet1dBlock(num_filters, *spec, dropout=dropout, dilation=dilation) for spec in block_spec]
        self.blocks = torch.nn.Sequential(*blocks)

    def forward(self, x):
        return self.blocks(x)



class LogisticRegressionTorch(nn.Module):
    def __init__(self, input_dim: int, output_dim: int):
        super(LogisticRegressionTorch, self).__init__()
        self.batch_norm = nn.BatchNorm1d(num_features=input_dim)
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):
        x = self.batch_norm(x)
        out = self.linear(x)
        return out

class BertClassifier(nn.Module):
    def __init__(self, bert_model: AutoModel, classifier: LogisticRegressionTorch, num_labels: int):
        super(BertClassifier, self).__init__()
        self.bert = bert_model
        self.classifier = classifier
        self.num_labels = num_labels

    def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None):
        outputs = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
        pooled_output = outputs.hidden_states[-1][:, 0, :]
        logits = self.classifier(pooled_output)
        return logits