Spaces:
Running
Running
File size: 7,409 Bytes
f1118b2 1685375 77bed18 f1118b2 b8c65a2 f1118b2 95307c3 77bed18 f1118b2 b8c65a2 e56bb7e f1118b2 b8c65a2 f6b6b2d b8c65a2 42ba245 ca31f95 b8c65a2 42ba245 b8c65a2 f1118b2 42ba245 f1118b2 b8c65a2 f1118b2 d6cee90 f1118b2 b8c65a2 f1118b2 468bcf3 f1118b2 b8c65a2 f1118b2 b6451a0 c767360 f1118b2 f6b6b2d f1118b2 f6b6b2d f1118b2 60af332 f1118b2 b8c65a2 f1118b2 b8c65a2 f1118b2 b8c65a2 f1118b2 b8c65a2 42ba245 b8c65a2 1685375 e49e879 1685375 b8c65a2 1685375 b8c65a2 1685375 f1118b2 e85616b f1118b2 95307c3 f1118b2 390132f f1118b2 b8c65a2 f1118b2 95307c3 f1118b2 b8c65a2 f1118b2 b8c65a2 f1118b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import gradio as gr
import numpy as np
import pandas as pd
leader_component_values = [None]
space = " "
def make_default_md():
leaderboard_md = f"""
# NeurIPS LLM Merging Competition Leaderboard
[Website](https://llm-merging.github.io/index) | [Starter Kit (Github)](https://github.com/llm-merging/LLM-Merging) | [Discord](https://discord.com/invite/dPBHEVnV)
"""
return leaderboard_md
def make_arena_leaderboard_md(model_table_df):
total_models = len(model_table_df)
leaderboard_md = f"""
Validation Benchmark Performance is averaged.
Final performance will be assessed at the end of the competition on a hidden test set, which may or may not be correlated with Validation performance.
If you've made a submission, but don't see your model below, or there is no score for your model, please be patient -- our current setup requires us to manually evaluate all submissions.
Higher values are better.
Total #models: **{total_models}**.{space}
"""
return leaderboard_md
def load_leaderboard_table_csv(filename, add_hyperlink=False):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
for j in range(len(heads)):
item = {}
for h, v in zip(heads, row):
if h == "Validation Score":
if v != "-":
v = ast.literal_eval(v)
else:
v = np.nan
item[h] = v
if add_hyperlink:
item["Model"] = f'<a target="_blank" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{item["Model"]}</a>'
rows.append(item)
rows.sort(key=lambda m: m.get("Validation Score", 0), reverse=True)
return rows
def get_full_table(model_table_df):
values = []
for i in range(len(model_table_df)):
row = []
ranking = i+1
row.append(ranking)
model_name = model_table_df.iloc[i]["Model"]
score = model_table_df.iloc[i]["Validation Score"]
# model display name
row.append(model_name)
row.append(score)
values.append(row)
# values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
return values
key_to_category_name = {
"full": "Overall",
}
cat_name_to_explanation = {
"Overall": "Overall Questions",
}
def build_leaderboard_tab(leaderboard_table_file, show_plot=False):
arena_dfs = {}
category_elo_results = {}
if leaderboard_table_file is None: # Do live update
default_md = "Loading ..."
else:
default_md = make_default_md()
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
if leaderboard_table_file:
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
with gr.Tabs() as tabs:
arena_table_vals = get_full_table(model_table_df)
with gr.Tab("Full leaderboard", id=0):
md = make_arena_leaderboard_md(model_table_df)
leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
display_df = gr.Dataframe(
headers=[
"Rank",
"🤖 Model / Submission Name",
"⭐ Validation Performance",
],
datatype=[
"number",
"markdown",
"number",
],
value=arena_table_vals,
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 110],
wrap=True,
)
gr.Markdown(
f"""Note: .
""",
elem_id="leaderboard_markdown"
)
leader_component_values[:] = [default_md]
if not show_plot:
gr.Markdown(
""" ## Submit your model [here]().
""",
elem_id="leaderboard_markdown",
)
else:
pass
with gr.Accordion(
"📝 Citation",
open=True,
):
citation_md = """
### Citation
Please cite the following paper
"""
gr.Markdown(citation_md, elem_id="leaderboard_markdown")
gr.Markdown(acknowledgment_md)
return [md_1]
block_css = """
#notice_markdown {
font-size: 104%
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#category_deets {
text-align: center;
padding: 0px;
padding-left: 5px;
}
#leaderboard_markdown {
font-size: 104%
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_header_markdown {
font-size: 104%;
text-align: center;
display:block;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
#plot-title {
text-align: center;
display:block;
}
#non-interactive-button {
display: inline-block;
padding: 10px 10px;
background-color: #f7f7f7; /* Super light grey background */
text-align: center;
font-size: 26px; /* Larger text */
border-radius: 0; /* Straight edges, no border radius */
border: 0px solid #dcdcdc; /* A light grey border to match the background */
user-select: none; /* The text inside the button is not selectable */
pointer-events: none; /* The button is non-interactive */
}
footer {
display:none !important
}
.sponsor-image-about img {
margin: 0 20px;
margin-top: 20px;
height: 40px;
max-height: 100%;
width: auto;
float: left;
}
"""
acknowledgment_md = """
### Acknowledgment
We thank Hugging Face, sakana.ai, and arcee.ai for their generous [sponsorship](https://llm-merging.github.io/sponsors).
<div class="sponsor-image-about">
</div>
"""
def build_demo(leaderboard_table_file):
text_size = gr.themes.sizes.text_lg
theme = gr.themes.Base(text_size=text_size)
theme.set(button_secondary_background_fill_hover="*primary_300",
button_secondary_background_fill_hover_dark="*primary_700")
with gr.Blocks(
title="LLM Merging Leaderboard",
theme=theme,
# theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme
css=block_css,
) as demo:
leader_components = build_leaderboard_tab(
leaderboard_table_file, show_plot=True
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
args = parser.parse_args()
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
leaderboard_table_file = leaderboard_table_files[-1]
demo = build_demo(leaderboard_table_file)
demo.launch(share=args.share, server_name=args.host, server_port=args.port) |