|
|
|
|
|
|
|
|
|
|
|
import random |
|
import os |
|
import json |
|
import torchaudio |
|
from tqdm import tqdm |
|
from glob import glob |
|
from collections import defaultdict |
|
|
|
from utils.util import has_existed |
|
from utils.audio_slicer import split_utterances_from_audio |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def _split_utts(): |
|
raw_dir = "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/xueyaozhang/dataset/ζη/cocoeval/raw" |
|
output_root = "/mnt/chongqinggeminiceph1fs/geminicephfs/wx-mm-spr-xxxx/xueyaozhang/dataset/ζη/cocoeval/utterances" |
|
|
|
if os.path.exists(output_root): |
|
os.system("rm -rf {}".format(output_root)) |
|
|
|
vocal_files = glob(os.path.join(raw_dir, "*/vocal.wav")) |
|
for vocal_f in tqdm(vocal_files): |
|
song_name = vocal_f.split("/")[-2] |
|
|
|
output_dir = os.path.join(output_root, song_name) |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
split_utterances_from_audio(vocal_f, output_dir, min_interval=300) |
|
|
|
|
|
def cocoeval_statistics(data_dir): |
|
song2utts = defaultdict(list) |
|
|
|
song_infos = glob(data_dir + "/*") |
|
|
|
for song in song_infos: |
|
song_name = song.split("/")[-1] |
|
utts = glob(song + "/*.wav") |
|
for utt in utts: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
song2utts[song_name].append(uid) |
|
|
|
print("Cocoeval: {} songs".format(len(song_infos))) |
|
return song2utts |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing datasets for Cocoeval...\n") |
|
|
|
save_dir = os.path.join(output_path, "cocoeval") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
if has_existed(test_output_file): |
|
return |
|
|
|
|
|
song2utts = cocoeval_statistics(dataset_path) |
|
|
|
train, test = [], [] |
|
train_index_count, test_index_count = 0, 0 |
|
train_total_duration, test_total_duration = 0.0, 0.0 |
|
|
|
for song_name, uids in tqdm(song2utts.items()): |
|
for chosen_uid in uids: |
|
res = { |
|
"Dataset": "cocoeval", |
|
"Singer": "TBD", |
|
"Song": song_name, |
|
"Uid": "{}_{}".format(song_name, chosen_uid), |
|
} |
|
res["Path"] = "{}/{}.wav".format(song_name, chosen_uid) |
|
res["Path"] = os.path.join(dataset_path, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|