|
|
|
|
|
|
|
|
|
|
|
import glob |
|
import os |
|
import json |
|
import torchaudio |
|
from tqdm import tqdm |
|
from collections import defaultdict |
|
|
|
|
|
from utils.io import save_audio |
|
from utils.util import has_existed, remove_and_create |
|
from utils.audio_slicer import Slicer |
|
from preprocessors import GOLDEN_TEST_SAMPLES |
|
|
|
|
|
def split_to_utterances(input_dir, output_dir): |
|
print("Splitting to utterances for {}...".format(input_dir)) |
|
|
|
files_list = glob.glob("*.flac", root_dir=input_dir) |
|
files_list.sort() |
|
for wav_file in tqdm(files_list): |
|
|
|
waveform, fs = torchaudio.load(os.path.join(input_dir, wav_file)) |
|
|
|
|
|
filename = wav_file.replace(" ", "") |
|
filename = filename.replace("(Live)", "") |
|
song_id, filename = filename.split("ζε₯-") |
|
|
|
song_id = song_id.split("_")[0] |
|
song_name = "{:03d}".format(int(song_id)) + filename.split("_")[0].split("-")[0] |
|
|
|
|
|
slicer = Slicer(sr=fs, threshold=-30.0, max_sil_kept=3000) |
|
chunks = slicer.slice(waveform) |
|
|
|
save_dir = os.path.join(output_dir, song_name) |
|
remove_and_create(save_dir) |
|
|
|
for i, chunk in enumerate(chunks): |
|
output_file = os.path.join(save_dir, "{:04d}.wav".format(i)) |
|
save_audio(output_file, chunk, fs) |
|
|
|
|
|
def _main(dataset_path): |
|
""" |
|
Split to utterances |
|
""" |
|
utterance_dir = os.path.join(dataset_path, "utterances") |
|
split_to_utterances(os.path.join(dataset_path, "vocal_v2"), utterance_dir) |
|
|
|
|
|
def get_test_songs(): |
|
golden_samples = GOLDEN_TEST_SAMPLES["lijian"] |
|
golden_songs = [s.split("_")[0] for s in golden_samples] |
|
return golden_songs |
|
|
|
|
|
def statistics(utt_dir): |
|
song2utts = defaultdict(list) |
|
|
|
song_infos = glob.glob(utt_dir + "/*") |
|
song_infos.sort() |
|
for song in song_infos: |
|
song_name = song.split("/")[-1] |
|
utt_infos = glob.glob(song + "/*.wav") |
|
utt_infos.sort() |
|
for utt in utt_infos: |
|
uid = utt.split("/")[-1].split(".")[0] |
|
song2utts[song_name].append(uid) |
|
|
|
utt_sum = sum([len(utts) for utts in song2utts.values()]) |
|
print("Li Jian: {} unique songs, {} utterances".format(len(song2utts), utt_sum)) |
|
return song2utts |
|
|
|
|
|
def main(output_path, dataset_path): |
|
print("-" * 10) |
|
print("Preparing test samples for Li Jian...\n") |
|
|
|
if not os.path.exists(os.path.join(dataset_path, "utterances")): |
|
print("Spliting into utterances...\n") |
|
_main(dataset_path) |
|
|
|
save_dir = os.path.join(output_path, "lijian") |
|
train_output_file = os.path.join(save_dir, "train.json") |
|
test_output_file = os.path.join(save_dir, "test.json") |
|
if has_existed(test_output_file): |
|
return |
|
|
|
|
|
lijian_path = os.path.join(dataset_path, "utterances") |
|
song2utts = statistics(lijian_path) |
|
test_songs = get_test_songs() |
|
|
|
|
|
train = [] |
|
test = [] |
|
|
|
train_index_count = 0 |
|
test_index_count = 0 |
|
|
|
train_total_duration = 0 |
|
test_total_duration = 0 |
|
|
|
for chosen_song, utts in tqdm(song2utts.items()): |
|
for chosen_uid in song2utts[chosen_song]: |
|
res = { |
|
"Dataset": "lijian", |
|
"Singer": "lijian", |
|
"Uid": "{}_{}".format(chosen_song, chosen_uid), |
|
} |
|
res["Path"] = "{}/{}.wav".format(chosen_song, chosen_uid) |
|
res["Path"] = os.path.join(lijian_path, res["Path"]) |
|
assert os.path.exists(res["Path"]) |
|
|
|
waveform, sample_rate = torchaudio.load(res["Path"]) |
|
duration = waveform.size(-1) / sample_rate |
|
res["Duration"] = duration |
|
|
|
if duration <= 1e-8: |
|
continue |
|
|
|
if chosen_song in test_songs: |
|
res["index"] = test_index_count |
|
test_total_duration += duration |
|
test.append(res) |
|
test_index_count += 1 |
|
else: |
|
res["index"] = train_index_count |
|
train_total_duration += duration |
|
train.append(res) |
|
train_index_count += 1 |
|
|
|
print("#Train = {}, #Test = {}".format(len(train), len(test))) |
|
print( |
|
"#Train hours= {}, #Test hours= {}".format( |
|
train_total_duration / 3600, test_total_duration / 3600 |
|
) |
|
) |
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True) |
|
with open(train_output_file, "w") as f: |
|
json.dump(train, f, indent=4, ensure_ascii=False) |
|
with open(test_output_file, "w") as f: |
|
json.dump(test, f, indent=4, ensure_ascii=False) |
|
|