|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from utils.util import * |
|
from modules.flow.modules import * |
|
from modules.base.base_module import * |
|
from modules.transformer.attentions import Encoder |
|
from modules.duration_predictor.standard_duration_predictor import DurationPredictor |
|
from modules.duration_predictor.stochastic_duration_predictor import ( |
|
StochasticDurationPredictor, |
|
) |
|
from models.vocoders.gan.generator.hifigan import HiFiGAN_vits as Generator |
|
|
|
try: |
|
from modules import monotonic_align |
|
except ImportError: |
|
print("Monotonic align not found. Please make sure you have compiled it.") |
|
|
|
|
|
class TextEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
n_vocab, |
|
out_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
): |
|
super().__init__() |
|
self.n_vocab = n_vocab |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
|
|
self.emb = nn.Embedding(n_vocab, hidden_channels) |
|
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) |
|
|
|
self.encoder = Encoder( |
|
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths): |
|
x = self.emb(x) * math.sqrt(self.hidden_channels) |
|
x = torch.transpose(x, 1, -1) |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
|
|
x = self.encoder(x * x_mask, x_mask) |
|
stats = self.proj(x) * x_mask |
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
return x, m, logs, x_mask |
|
|
|
|
|
class ResidualCouplingBlock(nn.Module): |
|
def __init__( |
|
self, |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
n_flows=4, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.n_flows = n_flows |
|
self.gin_channels = gin_channels |
|
|
|
self.flows = nn.ModuleList() |
|
for i in range(n_flows): |
|
self.flows.append( |
|
ResidualCouplingLayer( |
|
channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
mean_only=True, |
|
) |
|
) |
|
self.flows.append(Flip()) |
|
|
|
def forward(self, x, x_mask, g=None, reverse=False): |
|
if not reverse: |
|
for flow in self.flows: |
|
x, _ = flow(x, x_mask, g=g, reverse=reverse) |
|
else: |
|
for flow in reversed(self.flows): |
|
x = flow(x, x_mask, g=g, reverse=reverse) |
|
return x |
|
|
|
|
|
class PosteriorEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=0, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.hidden_channels = hidden_channels |
|
self.kernel_size = kernel_size |
|
self.dilation_rate = dilation_rate |
|
self.n_layers = n_layers |
|
self.gin_channels = gin_channels |
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) |
|
self.enc = WN( |
|
hidden_channels, |
|
kernel_size, |
|
dilation_rate, |
|
n_layers, |
|
gin_channels=gin_channels, |
|
) |
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) |
|
|
|
def forward(self, x, x_lengths, g=None): |
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) |
|
x = self.pre(x) * x_mask |
|
x = self.enc(x, x_mask, g=g) |
|
stats = self.proj(x) * x_mask |
|
m, logs = torch.split(stats, self.out_channels, dim=1) |
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask |
|
return z, m, logs, x_mask |
|
|
|
|
|
class SynthesizerTrn(nn.Module): |
|
""" |
|
Synthesizer for Training |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_vocab, |
|
spec_channels, |
|
segment_size, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
n_speakers=0, |
|
gin_channels=0, |
|
use_sdp=True, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.n_vocab = n_vocab |
|
self.spec_channels = spec_channels |
|
self.inter_channels = inter_channels |
|
self.hidden_channels = hidden_channels |
|
self.filter_channels = filter_channels |
|
self.n_heads = n_heads |
|
self.n_layers = n_layers |
|
self.kernel_size = kernel_size |
|
self.p_dropout = p_dropout |
|
self.resblock = resblock |
|
self.resblock_kernel_sizes = resblock_kernel_sizes |
|
self.resblock_dilation_sizes = resblock_dilation_sizes |
|
self.upsample_rates = upsample_rates |
|
self.upsample_initial_channel = upsample_initial_channel |
|
self.upsample_kernel_sizes = upsample_kernel_sizes |
|
self.segment_size = segment_size |
|
self.n_speakers = n_speakers |
|
self.gin_channels = gin_channels |
|
|
|
self.use_sdp = use_sdp |
|
|
|
self.enc_p = TextEncoder( |
|
n_vocab, |
|
inter_channels, |
|
hidden_channels, |
|
filter_channels, |
|
n_heads, |
|
n_layers, |
|
kernel_size, |
|
p_dropout, |
|
) |
|
self.dec = Generator( |
|
inter_channels, |
|
resblock, |
|
resblock_kernel_sizes, |
|
resblock_dilation_sizes, |
|
upsample_rates, |
|
upsample_initial_channel, |
|
upsample_kernel_sizes, |
|
gin_channels=gin_channels, |
|
) |
|
self.enc_q = PosteriorEncoder( |
|
spec_channels, |
|
inter_channels, |
|
hidden_channels, |
|
5, |
|
1, |
|
16, |
|
gin_channels=gin_channels, |
|
) |
|
self.flow = ResidualCouplingBlock( |
|
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels |
|
) |
|
|
|
if use_sdp: |
|
self.dp = StochasticDurationPredictor( |
|
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels |
|
) |
|
else: |
|
self.dp = DurationPredictor( |
|
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels |
|
) |
|
|
|
if n_speakers >= 1: |
|
self.emb_g = nn.Embedding(n_speakers, gin_channels) |
|
|
|
def forward(self, data): |
|
x = data["phone_seq"] |
|
x_lengths = data["phone_len"] |
|
y = data["linear"] |
|
y_lengths = data["target_len"] |
|
|
|
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) |
|
if self.n_speakers > 0: |
|
g = self.emb_g(data["spk_id"].squeeze(-1)).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) |
|
z_p = self.flow(z, y_mask, g=g) |
|
|
|
with torch.no_grad(): |
|
|
|
s_p_sq_r = torch.exp(-2 * logs_p) |
|
neg_cent1 = torch.sum( |
|
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True |
|
) |
|
neg_cent2 = torch.matmul( |
|
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r |
|
) |
|
neg_cent3 = torch.matmul( |
|
z_p.transpose(1, 2), (m_p * s_p_sq_r) |
|
) |
|
neg_cent4 = torch.sum( |
|
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True |
|
) |
|
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 |
|
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = ( |
|
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)) |
|
.unsqueeze(1) |
|
.detach() |
|
) |
|
|
|
w = attn.sum(2) |
|
if self.use_sdp: |
|
l_length = self.dp(x, x_mask, w, g=g) |
|
l_length = l_length / torch.sum(x_mask) |
|
else: |
|
logw_ = torch.log(w + 1e-6) * x_mask |
|
logw = self.dp(x, x_mask, g=g) |
|
l_length = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) |
|
|
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) |
|
|
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size) |
|
o = self.dec(z_slice, g=g) |
|
outputs = { |
|
"y_hat": o, |
|
"l_length": l_length, |
|
"attn": attn, |
|
"ids_slice": ids_slice, |
|
"x_mask": x_mask, |
|
"z_mask": y_mask, |
|
"z": z, |
|
"z_p": z_p, |
|
"m_p": m_p, |
|
"logs_p": logs_p, |
|
"m_q": m_q, |
|
"logs_q": logs_q, |
|
} |
|
return outputs |
|
|
|
def infer( |
|
self, |
|
x, |
|
x_lengths, |
|
sid=None, |
|
noise_scale=1, |
|
length_scale=1, |
|
noise_scale_w=1.0, |
|
max_len=None, |
|
): |
|
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) |
|
if self.n_speakers > 0: |
|
sid = sid.squeeze(-1) |
|
g = self.emb_g(sid).unsqueeze(-1) |
|
else: |
|
g = None |
|
|
|
if self.use_sdp: |
|
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) |
|
else: |
|
logw = self.dp(x, x_mask, g=g) |
|
w = torch.exp(logw) * x_mask * length_scale |
|
w_ceil = torch.ceil(w) |
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() |
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(x_mask.dtype) |
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) |
|
attn = generate_path(w_ceil, attn_mask) |
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale |
|
z = self.flow(z_p, y_mask, g=g, reverse=True) |
|
o = self.dec((z * y_mask)[:, :, :max_len], g=g) |
|
|
|
outputs = { |
|
"y_hat": o, |
|
"attn": attn, |
|
"mask": y_mask, |
|
"z": z, |
|
"z_p": z_p, |
|
"m_p": m_p, |
|
"logs_p": logs_p, |
|
} |
|
|
|
return outputs |
|
|
|
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt): |
|
assert self.n_speakers > 0, "n_speakers have to be larger than 0." |
|
g_src = self.emb_g(sid_src).unsqueeze(-1) |
|
g_tgt = self.emb_g(sid_tgt).unsqueeze(-1) |
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src) |
|
z_p = self.flow(z, y_mask, g=g_src) |
|
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) |
|
o_hat = self.dec(z_hat * y_mask, g=g_tgt) |
|
return o_hat, y_mask, (z, z_p, z_hat) |
|
|