|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
|
|
import torch |
|
|
|
from models.svc.diffusion.diffusion_trainer import DiffusionTrainer |
|
from models.svc.comosvc.comosvc_trainer import ComoSVCTrainer |
|
from models.svc.transformer.transformer_trainer import TransformerTrainer |
|
from models.svc.vits.vits_trainer import VitsSVCTrainer |
|
from utils.util import load_config |
|
|
|
|
|
def build_trainer(args, cfg): |
|
supported_trainer = { |
|
"DiffWaveNetSVC": DiffusionTrainer, |
|
"DiffComoSVC": ComoSVCTrainer, |
|
"TransformerSVC": TransformerTrainer, |
|
"VitsSVC": VitsSVCTrainer, |
|
} |
|
|
|
trainer_class = supported_trainer[cfg.model_type] |
|
trainer = trainer_class(args, cfg) |
|
return trainer |
|
|
|
|
|
def cuda_relevant(deterministic=False): |
|
torch.cuda.empty_cache() |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.enabled = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
torch.backends.cudnn.deterministic = deterministic |
|
torch.backends.cudnn.benchmark = not deterministic |
|
torch.use_deterministic_algorithms(deterministic) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--config", |
|
default="config.json", |
|
help="json files for configurations.", |
|
required=True, |
|
) |
|
parser.add_argument( |
|
"--exp_name", |
|
type=str, |
|
default="exp_name", |
|
help="A specific name to note the experiment", |
|
required=True, |
|
) |
|
parser.add_argument( |
|
"--resume", |
|
action="store_true", |
|
help="If specified, to resume from the existing checkpoint.", |
|
) |
|
parser.add_argument( |
|
"--resume_from_ckpt_path", |
|
type=str, |
|
default="", |
|
help="The specific checkpoint path that you want to resume from.", |
|
) |
|
parser.add_argument( |
|
"--resume_type", |
|
type=str, |
|
default="", |
|
help="`resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights", |
|
) |
|
|
|
parser.add_argument( |
|
"--log_level", default="warning", help="logging level (debug, info, warning)" |
|
) |
|
args = parser.parse_args() |
|
cfg = load_config(args.config) |
|
|
|
|
|
if ( |
|
type(cfg.preprocess.data_augment) == list |
|
and len(cfg.preprocess.data_augment) > 0 |
|
): |
|
new_datasets_list = [] |
|
for dataset in cfg.preprocess.data_augment: |
|
new_datasets = [ |
|
f"{dataset}_pitch_shift" if cfg.preprocess.use_pitch_shift else None, |
|
( |
|
f"{dataset}_formant_shift" |
|
if cfg.preprocess.use_formant_shift |
|
else None |
|
), |
|
f"{dataset}_equalizer" if cfg.preprocess.use_equalizer else None, |
|
f"{dataset}_time_stretch" if cfg.preprocess.use_time_stretch else None, |
|
] |
|
new_datasets_list.extend(filter(None, new_datasets)) |
|
cfg.dataset.extend(new_datasets_list) |
|
|
|
|
|
cuda_relevant() |
|
|
|
|
|
trainer = build_trainer(args, cfg) |
|
|
|
trainer.train_loop() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|