File size: 15,473 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import ExponentialLR
from tqdm import tqdm
from utils.util import *
from utils.mel import mel_spectrogram_torch
from models.tts.base import TTSTrainer
from models.tts.vits.vits import SynthesizerTrn
from models.tts.vits.vits_dataset import VITSDataset, VITSCollator
from models.vocoders.gan.discriminator.mpd import (
MultiPeriodDiscriminator_vits as MultiPeriodDiscriminator,
)
class VITSTrainer(TTSTrainer):
def __init__(self, args, cfg):
TTSTrainer.__init__(self, args, cfg)
if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training:
if cfg.model.n_speakers == 0:
cfg.model.n_speaker = len(self.speakers)
def _build_model(self):
net_g = SynthesizerTrn(
self.cfg.model.text_token_num,
self.cfg.preprocess.n_fft // 2 + 1,
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
**self.cfg.model,
)
net_d = MultiPeriodDiscriminator(self.cfg.model.use_spectral_norm)
model = {"generator": net_g, "discriminator": net_d}
return model
def _build_dataset(self):
return VITSDataset, VITSCollator
def _build_optimizer(self):
optimizer_g = torch.optim.AdamW(
self.model["generator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer_d = torch.optim.AdamW(
self.model["discriminator"].parameters(),
self.cfg.train.learning_rate,
betas=self.cfg.train.AdamW.betas,
eps=self.cfg.train.AdamW.eps,
)
optimizer = {"optimizer_g": optimizer_g, "optimizer_d": optimizer_d}
return optimizer
def _build_scheduler(self):
scheduler_g = ExponentialLR(
self.optimizer["optimizer_g"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler_d = ExponentialLR(
self.optimizer["optimizer_d"],
gamma=self.cfg.train.lr_decay,
last_epoch=self.epoch - 1,
)
scheduler = {"scheduler_g": scheduler_g, "scheduler_d": scheduler_d}
return scheduler
def _build_criterion(self):
class GeneratorLoss(nn.Module):
def __init__(self, cfg):
super(GeneratorLoss, self).__init__()
self.cfg = cfg
self.l1_loss = nn.L1Loss()
def generator_loss(self, disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
dg = dg.float()
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
def feature_loss(self, fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
rl = rl.float().detach()
gl = gl.float()
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def kl_loss(self, z_p, logs_q, m_p, logs_p, z_mask):
"""
z_p, logs_q: [b, h, t_t]
m_p, logs_p: [b, h, t_t]
"""
z_p = z_p.float()
logs_q = logs_q.float()
m_p = m_p.float()
logs_p = logs_p.float()
z_mask = z_mask.float()
kl = logs_p - logs_q - 0.5
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
kl = torch.sum(kl * z_mask)
l = kl / torch.sum(z_mask)
return l
def forward(
self,
outputs_g,
outputs_d,
y_mel,
y_hat_mel,
):
loss_g = {}
# duration loss
loss_dur = torch.sum(outputs_g["l_length"].float())
loss_g["loss_dur"] = loss_dur
# mel loss
loss_mel = self.l1_loss(y_mel, y_hat_mel) * self.cfg.train.c_mel
loss_g["loss_mel"] = loss_mel
# kl loss
loss_kl = (
self.kl_loss(
outputs_g["z_p"],
outputs_g["logs_q"],
outputs_g["m_p"],
outputs_g["logs_p"],
outputs_g["z_mask"],
)
* self.cfg.train.c_kl
)
loss_g["loss_kl"] = loss_kl
# feature loss
loss_fm = self.feature_loss(outputs_d["fmap_rs"], outputs_d["fmap_gs"])
loss_g["loss_fm"] = loss_fm
# gan loss
loss_gen, losses_gen = self.generator_loss(outputs_d["y_d_hat_g"])
loss_g["loss_gen"] = loss_gen
loss_g["loss_gen_all"] = (
loss_dur + loss_mel + loss_kl + loss_fm + loss_gen
)
return loss_g
class DiscriminatorLoss(nn.Module):
def __init__(self, cfg):
super(DiscriminatorLoss, self).__init__()
self.cfg = cfg
self.l1Loss = torch.nn.L1Loss(reduction="mean")
def __call__(self, disc_real_outputs, disc_generated_outputs):
loss_d = {}
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
dr = dr.float()
dg = dg.float()
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
loss_d["loss_disc_all"] = loss
return loss_d
criterion = {
"generator": GeneratorLoss(self.cfg),
"discriminator": DiscriminatorLoss(self.cfg),
}
return criterion
def write_summary(
self,
losses,
stats,
images={},
audios={},
audio_sampling_rate=24000,
tag="train",
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
self.sw.add_scalar(
"learning_rate",
self.optimizer["optimizer_g"].param_groups[0]["lr"],
self.step,
)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
def write_valid_summary(
self, losses, stats, images={}, audios={}, audio_sampling_rate=24000, tag="val"
):
for key, value in losses.items():
self.sw.add_scalar(tag + "/" + key, value, self.step)
if len(images) != 0:
for key, value in images.items():
self.sw.add_image(key, value, self.global_step, batchformats="HWC")
if len(audios) != 0:
for key, value in audios.items():
self.sw.add_audio(key, value, self.global_step, audio_sampling_rate)
def get_state_dict(self):
state_dict = {
"generator": self.model["generator"].state_dict(),
"discriminator": self.model["discriminator"].state_dict(),
"optimizer_g": self.optimizer["optimizer_g"].state_dict(),
"optimizer_d": self.optimizer["optimizer_d"].state_dict(),
"scheduler_g": self.scheduler["scheduler_g"].state_dict(),
"scheduler_d": self.scheduler["scheduler_d"].state_dict(),
"step": self.step,
"epoch": self.epoch,
"batch_size": self.cfg.train.batch_size,
}
return state_dict
def load_model(self, checkpoint):
self.step = checkpoint["step"]
self.epoch = checkpoint["epoch"]
self.model["generator"].load_state_dict(checkpoint["generator"])
self.model["discriminator"].load_state_dict(checkpoint["discriminator"])
self.optimizer["optimizer_g"].load_state_dict(checkpoint["optimizer_g"])
self.optimizer["optimizer_d"].load_state_dict(checkpoint["optimizer_d"])
self.scheduler["scheduler_g"].load_state_dict(checkpoint["scheduler_g"])
self.scheduler["scheduler_d"].load_state_dict(checkpoint["scheduler_d"])
@torch.inference_mode()
def _valid_step(self, batch):
r"""Testing forward step. Should return average loss of a sample over
one batch. Provoke ``_forward_step`` is recommended except for special case.
See ``_test_epoch`` for usage.
"""
valid_losses = {}
total_loss = 0
valid_stats = {}
batch["linear"] = batch["linear"].transpose(2, 1) # [b, d, t]
batch["mel"] = batch["mel"].transpose(2, 1) # [b, d, t]
batch["audio"] = batch["audio"].unsqueeze(1) # [b, d, t]
# Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
y_mel = slice_segments(
batch["mel"],
outputs_g["ids_slice"],
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
)
y_hat_mel = mel_spectrogram_torch(
outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
)
y = slice_segments(
batch["audio"],
outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
self.cfg.preprocess.segment_size,
)
# Discriminator output
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
## Discriminator loss
loss_d = self.criterion["discriminator"](
outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
)
valid_losses.update(loss_d)
## Generator
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
valid_losses.update(loss_g)
for item in valid_losses:
valid_losses[item] = valid_losses[item].item()
total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
valid_losses,
valid_stats,
)
def _train_step(self, batch):
r"""Forward step for training and inference. This function is called
in ``_train_step`` & ``_test_step`` function.
"""
train_losses = {}
total_loss = 0
training_stats = {}
batch["linear"] = batch["linear"].transpose(2, 1) # [b, d, t]
batch["mel"] = batch["mel"].transpose(2, 1) # [b, d, t]
batch["audio"] = batch["audio"].unsqueeze(1) # [b, d, t]
# Train Discriminator
# Generator output
outputs_g = self.model["generator"](batch)
y_mel = slice_segments(
batch["mel"],
outputs_g["ids_slice"],
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
)
y_hat_mel = mel_spectrogram_torch(
outputs_g["y_hat"].squeeze(1), self.cfg.preprocess
)
y = slice_segments(
batch["audio"],
outputs_g["ids_slice"] * self.cfg.preprocess.hop_size,
self.cfg.preprocess.segment_size,
)
# Discriminator output
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"].detach())
## Discriminator loss
loss_d = self.criterion["discriminator"](
outputs_d["y_d_hat_r"], outputs_d["y_d_hat_g"]
)
train_losses.update(loss_d)
# BP and Grad Updated
self.optimizer["optimizer_d"].zero_grad()
self.accelerator.backward(loss_d["loss_disc_all"])
self.optimizer["optimizer_d"].step()
## Train Generator
outputs_d = self.model["discriminator"](y, outputs_g["y_hat"])
loss_g = self.criterion["generator"](outputs_g, outputs_d, y_mel, y_hat_mel)
train_losses.update(loss_g)
# BP and Grad Updated
self.optimizer["optimizer_g"].zero_grad()
self.accelerator.backward(loss_g["loss_gen_all"])
self.optimizer["optimizer_g"].step()
for item in train_losses:
train_losses[item] = train_losses[item].item()
total_loss = loss_g["loss_gen_all"] + loss_d["loss_disc_all"]
return (
total_loss.item(),
train_losses,
training_stats,
)
def _train_epoch(self):
r"""Training epoch. Should return average loss of a batch (sample) over
one epoch. See ``train_loop`` for usage.
"""
epoch_sum_loss: float = 0.0
epoch_losses: dict = {}
epoch_step: int = 0
for batch in tqdm(
self.train_dataloader,
desc=f"Training Epoch {self.epoch}",
unit="batch",
colour="GREEN",
leave=False,
dynamic_ncols=True,
smoothing=0.04,
disable=not self.accelerator.is_main_process,
):
with self.accelerator.accumulate(self.model):
total_loss, train_losses, training_stats = self._train_step(batch)
self.batch_count += 1
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
epoch_sum_loss += total_loss
for key, value in train_losses.items():
if key not in epoch_losses.keys():
epoch_losses[key] = value
else:
epoch_losses[key] += value
self.accelerator.log(
{
"Step/Generator Loss": train_losses["loss_gen_all"],
"Step/Discriminator Loss": train_losses["loss_disc_all"],
"Step/Generator Learning Rate": self.optimizer[
"optimizer_d"
].param_groups[0]["lr"],
"Step/Discriminator Learning Rate": self.optimizer[
"optimizer_g"
].param_groups[0]["lr"],
},
step=self.step,
)
self.step += 1
epoch_step += 1
self.accelerator.wait_for_everyone()
epoch_sum_loss = (
epoch_sum_loss
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
for key in epoch_losses.keys():
epoch_losses[key] = (
epoch_losses[key]
/ len(self.train_dataloader)
* self.cfg.train.gradient_accumulation_step
)
return epoch_sum_loss, epoch_losses
|