File size: 4,643 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import numpy as np
from text import text_to_sequence
from text.text_token_collation import phoneIDCollation
from models.tts.base.tts_dataset import (
TTSDataset,
TTSCollator,
TTSTestDataset,
TTSTestCollator,
)
class VITSDataset(TTSDataset):
def __init__(self, cfg, dataset, is_valid):
super().__init__(cfg, dataset, is_valid=is_valid)
def __getitem__(self, index):
single_feature = super().__getitem__(index)
return single_feature
def __len__(self):
return super().__len__()
def get_metadata(self):
metadata_filter = []
with open(self.metafile_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
for utt_info in metadata:
duration = utt_info["Duration"]
frame_len = (
duration
* self.cfg.preprocess.sample_rate
// self.cfg.preprocess.hop_size
)
if (
frame_len
< self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size
):
continue
metadata_filter.append(utt_info)
return metadata_filter
class VITSCollator(TTSCollator):
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
super().__init__(cfg)
def __call__(self, batch):
parsed_batch_features = super().__call__(batch)
return parsed_batch_features
class VITSTestDataset(TTSTestDataset):
def __init__(self, args, cfg):
super().__init__(args, cfg)
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, args.dataset)
if cfg.preprocess.use_spkid:
spk2id_path = os.path.join(processed_data_dir, cfg.preprocess.spk2id)
with open(spk2id_path, "r") as f:
self.spk2id = json.load(f)
utt2spk_path = os.path.join(processed_data_dir, cfg.preprocess.utt2spk)
self.utt2spk = dict()
with open(utt2spk_path, "r") as f:
for line in f.readlines():
utt, spk = line.strip().split("\t")
self.utt2spk[utt] = spk
if cfg.preprocess.use_text or cfg.preprocess.use_phone:
self.utt2seq = {}
for utt_info in self.metadata:
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
if cfg.preprocess.use_text:
text = utt_info["Text"]
sequence = text_to_sequence(text, cfg.preprocess.text_cleaners)
elif cfg.preprocess.use_phone:
# load phoneme squence from phone file
phone_path = os.path.join(
processed_data_dir, cfg.preprocess.phone_dir, uid + ".phone"
)
with open(phone_path, "r") as fin:
phones = fin.readlines()
assert len(phones) == 1
phones = phones[0].strip()
phones_seq = phones.split(" ")
phon_id_collator = phoneIDCollation(cfg, dataset=dataset)
sequence = phon_id_collator.get_phone_id_sequence(cfg, phones_seq)
self.utt2seq[utt] = sequence
def __getitem__(self, index):
utt_info = self.metadata[index]
dataset = utt_info["Dataset"]
uid = utt_info["Uid"]
utt = "{}_{}".format(dataset, uid)
single_feature = dict()
if self.cfg.preprocess.use_spkid:
single_feature["spk_id"] = np.array(
[self.spk2id[self.utt2spk[utt]]], dtype=np.int32
)
if self.cfg.preprocess.use_phone or self.cfg.preprocess.use_text:
single_feature["phone_seq"] = np.array(self.utt2seq[utt])
single_feature["phone_len"] = len(self.utt2seq[utt])
return single_feature
def get_metadata(self):
with open(self.metafile_path, "r", encoding="utf-8") as f:
metadata = json.load(f)
return metadata
def __len__(self):
return len(self.metadata)
class VITSTestCollator(TTSTestCollator):
"""Zero-pads model inputs and targets based on number of frames per step"""
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, batch):
return super().__call__(batch)
|