File size: 20,231 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
# Copyright (c) 2024 Amphion.
#
# This code is modified from https://github.com/imdanboy/jets/blob/main/espnet2/gan_tts/jets/generator.py
# Licensed under Apache License 2.0
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
from modules.transformer.Models import Encoder, Decoder
from modules.transformer.Layers import PostNet
from collections import OrderedDict
from models.tts.jets.alignments import (
AlignmentModule,
viterbi_decode,
average_by_duration,
make_pad_mask,
make_non_pad_mask,
get_random_segments,
)
from models.tts.jets.length_regulator import GaussianUpsampling
from models.vocoders.gan.generator.hifigan import HiFiGAN
import os
import json
from utils.util import load_config
def get_mask_from_lengths(lengths, max_len=None):
device = lengths.device
batch_size = lengths.shape[0]
if max_len is None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len).unsqueeze(0).expand(batch_size, -1).to(device)
mask = ids >= lengths.unsqueeze(1).expand(-1, max_len)
return mask
def pad(input_ele, mel_max_length=None):
if mel_max_length:
max_len = mel_max_length
else:
max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
out_list = list()
for i, batch in enumerate(input_ele):
if len(batch.shape) == 1:
one_batch_padded = F.pad(
batch, (0, max_len - batch.size(0)), "constant", 0.0
)
elif len(batch.shape) == 2:
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
class VarianceAdaptor(nn.Module):
"""Variance Adaptor"""
def __init__(self, cfg):
super(VarianceAdaptor, self).__init__()
self.duration_predictor = VariancePredictor(cfg)
self.length_regulator = LengthRegulator()
self.pitch_predictor = VariancePredictor(cfg)
self.energy_predictor = VariancePredictor(cfg)
# assign the pitch/energy feature level
if cfg.preprocess.use_frame_pitch:
self.pitch_feature_level = "frame_level"
self.pitch_dir = cfg.preprocess.pitch_dir
else:
self.pitch_feature_level = "phoneme_level"
self.pitch_dir = cfg.preprocess.phone_pitch_dir
if cfg.preprocess.use_frame_energy:
self.energy_feature_level = "frame_level"
self.energy_dir = cfg.preprocess.energy_dir
else:
self.energy_feature_level = "phoneme_level"
self.energy_dir = cfg.preprocess.phone_energy_dir
assert self.pitch_feature_level in ["phoneme_level", "frame_level"]
assert self.energy_feature_level in ["phoneme_level", "frame_level"]
pitch_quantization = cfg.model.variance_embedding.pitch_quantization
energy_quantization = cfg.model.variance_embedding.energy_quantization
n_bins = cfg.model.variance_embedding.n_bins
assert pitch_quantization in ["linear", "log"]
assert energy_quantization in ["linear", "log"]
with open(
os.path.join(
cfg.preprocess.processed_dir,
cfg.dataset[0],
self.energy_dir,
"statistics.json",
)
) as f:
stats = json.load(f)
stats = stats[cfg.dataset[0] + "_" + cfg.dataset[0]]
mean, std = (
stats["voiced_positions"]["mean"],
stats["voiced_positions"]["std"],
)
energy_min = (stats["total_positions"]["min"] - mean) / std
energy_max = (stats["total_positions"]["max"] - mean) / std
with open(
os.path.join(
cfg.preprocess.processed_dir,
cfg.dataset[0],
self.pitch_dir,
"statistics.json",
)
) as f:
stats = json.load(f)
stats = stats[cfg.dataset[0] + "_" + cfg.dataset[0]]
mean, std = (
stats["voiced_positions"]["mean"],
stats["voiced_positions"]["std"],
)
pitch_min = (stats["total_positions"]["min"] - mean) / std
pitch_max = (stats["total_positions"]["max"] - mean) / std
if pitch_quantization == "log":
self.pitch_bins = nn.Parameter(
torch.exp(
torch.linspace(np.log(pitch_min), np.log(pitch_max), n_bins - 1)
),
requires_grad=False,
)
else:
self.pitch_bins = nn.Parameter(
torch.linspace(pitch_min, pitch_max, n_bins - 1),
requires_grad=False,
)
if energy_quantization == "log":
self.energy_bins = nn.Parameter(
torch.exp(
torch.linspace(np.log(energy_min), np.log(energy_max), n_bins - 1)
),
requires_grad=False,
)
else:
self.energy_bins = nn.Parameter(
torch.linspace(energy_min, energy_max, n_bins - 1),
requires_grad=False,
)
self.pitch_embedding = nn.Embedding(
n_bins, cfg.model.transformer.encoder_hidden
)
self.energy_embedding = nn.Embedding(
n_bins, cfg.model.transformer.encoder_hidden
)
def get_pitch_embedding(self, x, target, mask, control):
prediction = self.pitch_predictor(x, mask)
if target is not None:
embedding = self.pitch_embedding(torch.bucketize(target, self.pitch_bins))
else:
prediction = prediction * control
embedding = self.pitch_embedding(
torch.bucketize(prediction, self.pitch_bins)
)
return prediction, embedding
def get_energy_embedding(self, x, target, mask, control):
prediction = self.energy_predictor(x, mask)
if target is not None:
embedding = self.energy_embedding(torch.bucketize(target, self.energy_bins))
else:
prediction = prediction * control
embedding = self.energy_embedding(
torch.bucketize(prediction, self.energy_bins)
)
return prediction, embedding
def forward(
self,
x,
src_mask,
mel_mask=None,
max_len=None,
pitch_target=None,
energy_target=None,
duration_target=None,
p_control=1.0,
e_control=1.0,
d_control=1.0,
pitch_embedding=None,
energy_embedding=None,
):
log_duration_prediction = self.duration_predictor(x, src_mask)
x = x + pitch_embedding
x = x + energy_embedding
pitch_prediction = self.pitch_predictor(x, src_mask)
energy_prediction = self.energy_predictor(x, src_mask)
if duration_target is not None:
x, mel_len = self.length_regulator(x, duration_target, max_len)
duration_rounded = duration_target
else:
duration_rounded = torch.clamp(
(torch.round(torch.exp(log_duration_prediction) - 1) * d_control),
min=0,
)
x, mel_len = self.length_regulator(x, duration_rounded, max_len)
mel_mask = get_mask_from_lengths(mel_len)
return (
x,
pitch_prediction,
energy_prediction,
log_duration_prediction,
duration_rounded,
mel_len,
mel_mask,
)
def inference(
self,
x,
src_mask,
mel_mask=None,
max_len=None,
pitch_target=None,
energy_target=None,
duration_target=None,
p_control=1.0,
e_control=1.0,
d_control=1.0,
pitch_embedding=None,
energy_embedding=None,
):
p_outs = self.pitch_predictor(x, src_mask)
e_outs = self.energy_predictor(x, src_mask)
d_outs = self.duration_predictor(x, src_mask)
return p_outs, e_outs, d_outs
class LengthRegulator(nn.Module):
"""Length Regulator"""
def __init__(self):
super(LengthRegulator, self).__init__()
def LR(self, x, duration, max_len):
device = x.device
output = list()
mel_len = list()
for batch, expand_target in zip(x, duration):
expanded = self.expand(batch, expand_target)
output.append(expanded)
mel_len.append(expanded.shape[0])
if max_len is not None:
output = pad(output, max_len)
else:
output = pad(output)
return output, torch.LongTensor(mel_len).to(device)
def expand(self, batch, predicted):
out = list()
for i, vec in enumerate(batch):
expand_size = predicted[i].item()
out.append(vec.expand(max(int(expand_size), 0), -1))
out = torch.cat(out, 0)
return out
def forward(self, x, duration, max_len):
output, mel_len = self.LR(x, duration, max_len)
return output, mel_len
class VariancePredictor(nn.Module):
"""Duration, Pitch and Energy Predictor"""
def __init__(self, cfg):
super(VariancePredictor, self).__init__()
self.input_size = cfg.model.transformer.encoder_hidden
self.filter_size = cfg.model.variance_predictor.filter_size
self.kernel = cfg.model.variance_predictor.kernel_size
self.conv_output_size = cfg.model.variance_predictor.filter_size
self.dropout = cfg.model.variance_predictor.dropout
self.conv_layer = nn.Sequential(
OrderedDict(
[
(
"conv1d_1",
Conv(
self.input_size,
self.filter_size,
kernel_size=self.kernel,
padding=(self.kernel - 1) // 2,
),
),
("relu_1", nn.ReLU()),
("layer_norm_1", nn.LayerNorm(self.filter_size)),
("dropout_1", nn.Dropout(self.dropout)),
(
"conv1d_2",
Conv(
self.filter_size,
self.filter_size,
kernel_size=self.kernel,
padding=1,
),
),
("relu_2", nn.ReLU()),
("layer_norm_2", nn.LayerNorm(self.filter_size)),
("dropout_2", nn.Dropout(self.dropout)),
]
)
)
self.linear_layer = nn.Linear(self.conv_output_size, 1)
def forward(self, encoder_output, mask):
out = self.conv_layer(encoder_output)
out = self.linear_layer(out)
out = out.squeeze(-1)
if mask is not None:
out = out.masked_fill(mask, 0.0)
return out
class Conv(nn.Module):
"""
Convolution Module
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
w_init="linear",
):
"""
:param in_channels: dimension of input
:param out_channels: dimension of output
:param kernel_size: size of kernel
:param stride: size of stride
:param padding: size of padding
:param dilation: dilation rate
:param bias: boolean. if True, bias is included.
:param w_init: str. weight inits with xavier initialization.
"""
super(Conv, self).__init__()
self.conv = nn.Conv1d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
)
def forward(self, x):
x = x.contiguous().transpose(1, 2)
x = self.conv(x)
x = x.contiguous().transpose(1, 2)
return x
class Jets(nn.Module):
def __init__(self, cfg) -> None:
super(Jets, self).__init__()
self.cfg = cfg
self.encoder = Encoder(cfg.model)
self.variance_adaptor = VarianceAdaptor(cfg)
self.decoder = Decoder(cfg.model)
self.length_regulator_infer = LengthRegulator()
self.mel_linear = nn.Linear(
cfg.model.transformer.decoder_hidden,
cfg.preprocess.n_mel,
)
self.postnet = PostNet(n_mel_channels=cfg.preprocess.n_mel)
self.speaker_emb = None
if cfg.train.multi_speaker_training:
with open(
os.path.join(
cfg.preprocess.processed_dir, cfg.dataset[0], "spk2id.json"
),
"r",
) as f:
n_speaker = len(json.load(f))
self.speaker_emb = nn.Embedding(
n_speaker,
cfg.model.transformer.encoder_hidden,
)
output_dim = cfg.preprocess.n_mel
attention_dim = 256
self.alignment_module = AlignmentModule(attention_dim, output_dim)
# NOTE(kan-bayashi): We use continuous pitch + FastPitch style avg
pitch_embed_kernel_size: int = 9
pitch_embed_dropout: float = 0.5
self.pitch_embed = torch.nn.Sequential(
torch.nn.Conv1d(
in_channels=1,
out_channels=attention_dim,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2,
),
torch.nn.Dropout(pitch_embed_dropout),
)
# NOTE(kan-bayashi): We use continuous enegy + FastPitch style avg
energy_embed_kernel_size: int = 9
energy_embed_dropout: float = 0.5
self.energy_embed = torch.nn.Sequential(
torch.nn.Conv1d(
in_channels=1,
out_channels=attention_dim,
kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2,
),
torch.nn.Dropout(energy_embed_dropout),
)
# define length regulator
self.length_regulator = GaussianUpsampling()
self.segment_size = cfg.train.segment_size
# Define HiFiGAN generator
hifi_cfg = load_config("egs/vocoder/gan/hifigan/exp_config.json")
# hifi_cfg.model.hifigan.resblock_kernel_sizes = [3, 7, 11]
hifi_cfg.preprocess.n_mel = attention_dim
self.generator = HiFiGAN(hifi_cfg)
def _source_mask(self, ilens: torch.Tensor) -> torch.Tensor:
"""Make masks for self-attention.
Args:
ilens (LongTensor): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for self-attention.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]], dtype=torch.uint8)
"""
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
return x_masks.unsqueeze(-2)
def forward(self, data, p_control=1.0, e_control=1.0, d_control=1.0):
speakers = data["spk_id"]
texts = data["texts"]
src_lens = data["text_len"]
max_src_len = max(src_lens)
feats = data["mel"]
mel_lens = data["target_len"] if "target_len" in data else None
feats_lengths = mel_lens
max_mel_len = max(mel_lens) if "target_len" in data else None
p_targets = data["pitch"] if "pitch" in data else None
e_targets = data["energy"] if "energy" in data else None
src_masks = get_mask_from_lengths(src_lens, max_src_len)
mel_masks = (
get_mask_from_lengths(mel_lens, max_mel_len)
if mel_lens is not None
else None
)
output = self.encoder(texts, src_masks)
if self.speaker_emb is not None:
output = output + self.speaker_emb(speakers).unsqueeze(1).expand(
-1, max_src_len, -1
)
# Forward alignment module and obtain duration, averaged pitch, energy
h_masks = make_pad_mask(src_lens).to(output.device)
log_p_attn = self.alignment_module(
output, feats, src_lens, feats_lengths, h_masks
)
ds, bin_loss = viterbi_decode(log_p_attn, src_lens, feats_lengths)
ps = average_by_duration(
ds, p_targets.squeeze(-1), src_lens, feats_lengths
).unsqueeze(-1)
es = average_by_duration(
ds, e_targets.squeeze(-1), src_lens, feats_lengths
).unsqueeze(-1)
p_embs = self.pitch_embed(ps.transpose(1, 2)).transpose(1, 2)
e_embs = self.energy_embed(es.transpose(1, 2)).transpose(1, 2)
# FastSpeech2 variance adaptor
(
output,
p_predictions,
e_predictions,
log_d_predictions,
d_rounded,
mel_lens,
mel_masks,
) = self.variance_adaptor(
output,
src_masks,
mel_masks,
max_mel_len,
p_targets,
e_targets,
ds,
p_control,
e_control,
d_control,
ps,
es,
)
# forward decoder
zs, _ = self.decoder(output, mel_masks) # (B, T_feats, adim)
# get random segments
z_segments, z_start_idxs = get_random_segments(
zs.transpose(1, 2),
feats_lengths,
self.segment_size,
)
# forward generator
wav = self.generator(z_segments)
return (
wav,
bin_loss,
log_p_attn,
z_start_idxs,
log_d_predictions,
ds,
p_predictions,
ps,
e_predictions,
es,
src_lens,
feats_lengths,
)
def inference(self, data, p_control=1.0, e_control=1.0, d_control=1.0):
speakers = data["spk_id"]
texts = data["texts"]
src_lens = data["text_len"]
max_src_len = max(src_lens)
mel_lens = data["target_len"] if "target_len" in data else None
feats_lengths = mel_lens
max_mel_len = max(mel_lens) if "target_len" in data else None
p_targets = data["pitch"] if "pitch" in data else None
e_targets = data["energy"] if "energy" in data else None
d_targets = data["durations"] if "durations" in data else None
src_masks = get_mask_from_lengths(src_lens, max_src_len)
mel_masks = (
get_mask_from_lengths(mel_lens, max_mel_len)
if mel_lens is not None
else None
)
x_masks = self._source_mask(src_lens)
hs = self.encoder(texts, src_masks)
(
p_outs,
e_outs,
d_outs,
) = self.variance_adaptor.inference(
hs,
src_masks,
)
p_embs = self.pitch_embed(p_outs.unsqueeze(-1).transpose(1, 2)).transpose(1, 2)
e_embs = self.energy_embed(e_outs.unsqueeze(-1).transpose(1, 2)).transpose(1, 2)
hs = hs + e_embs + p_embs
# Duration predictor inference mode: log_d_pred to d_pred
offset = 1.0
d_predictions = torch.clamp(
torch.round(d_outs.exp() - offset), min=0
).long() # avoid negative value
# forward decoder
hs, mel_len = self.length_regulator_infer(hs, d_predictions, max_mel_len)
mel_mask = get_mask_from_lengths(mel_len)
zs, _ = self.decoder(hs, mel_mask) # (B, T_feats, adim)
# forward generator
wav = self.generator(zs.transpose(1, 2))
return wav, d_predictions
|