Spaces:
Sleeping
Sleeping
File size: 5,585 Bytes
fe0e9f4 2b0a559 fe0e9f4 176daee fe0e9f4 176daee fe0e9f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from llama_index.core import (
VectorStoreIndex
)
from llama_index.core import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
from typing import Any, List, Tuple
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
import streamlit as st
from llama_index.llms.huggingface import (
HuggingFaceInferenceAPI
)
import os
HUGGINGFACEHUB_API_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
Q_END_POINT = os.environ.get("Q_END_POINT")
Q_API_KEY = os.environ.get("Q_API_KEY")
#DOC
#https://docs.llamaindex.ai/en/stable/examples/vector_stores/qdrant_hybrid.html
doc_tokenizer = AutoTokenizer.from_pretrained(
"naver/efficient-splade-VI-BT-large-doc"
)
doc_model = AutoModelForMaskedLM.from_pretrained(
"naver/efficient-splade-VI-BT-large-doc"
)
query_tokenizer = AutoTokenizer.from_pretrained(
"naver/efficient-splade-VI-BT-large-query"
)
query_model = AutoModelForMaskedLM.from_pretrained(
"naver/efficient-splade-VI-BT-large-query"
)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
doc_model = doc_model.to(device)
query_model = query_model.to(device)
def sparse_doc_vectors(
texts: List[str],
) -> Tuple[List[List[int]], List[List[float]]]:
"""
Computes vectors from logits and attention mask using ReLU, log, and max operations.
"""
tokens = doc_tokenizer(
texts, truncation=True, padding=True, return_tensors="pt"
)
if torch.cuda.is_available():
tokens = tokens.to("cuda:1")
output = doc_model(**tokens)
logits, attention_mask = output.logits, tokens.attention_mask
relu_log = torch.log(1 + torch.relu(logits))
weighted_log = relu_log * attention_mask.unsqueeze(-1)
tvecs, _ = torch.max(weighted_log, dim=1)
# extract the vectors that are non-zero and their indices
indices = []
vecs = []
for batch in tvecs:
indices.append(batch.nonzero(as_tuple=True)[0].tolist())
vecs.append(batch[indices[-1]].tolist())
return indices, vecs
def sparse_query_vectors(
texts: List[str],
) -> Tuple[List[List[int]], List[List[float]]]:
"""
Computes vectors from logits and attention mask using ReLU, log, and max operations.
"""
# TODO: compute sparse vectors in batches if max length is exceeded
tokens = query_tokenizer(
texts, truncation=True, padding=True, return_tensors="pt"
)
if torch.cuda.is_available():
tokens = tokens.to("cuda:1")
output = query_model(**tokens)
logits, attention_mask = output.logits, tokens.attention_mask
relu_log = torch.log(1 + torch.relu(logits))
weighted_log = relu_log * attention_mask.unsqueeze(-1)
tvecs, _ = torch.max(weighted_log, dim=1)
# extract the vectors that are non-zero and their indices
indices = []
vecs = []
for batch in tvecs:
indices.append(batch.nonzero(as_tuple=True)[0].tolist())
vecs.append(batch[indices[-1]].tolist())
return indices, vecs
st.header("Chat with the Bhagavad Gita docs 💬 📚")
if "messages" not in st.session_state.keys(): # Initialize the chat message history
st.session_state.messages = [
{"role": "assistant", "content": "Ask me a question about Gita!"}
]
# creates a persistant index to disk
client = QdrantClient(
Q_END_POINT,
api_key=Q_API_KEY,
)
# create our vector store with hybrid indexing enabled
# batch_size controls how many nodes are encoded with sparse vectors at once
vector_store = QdrantVectorStore(
"bhagavad_gita", client=client, enable_hybrid=True, batch_size=20,force_disable_check_same_thread=True,
sparse_doc_fn=sparse_doc_vectors,
sparse_query_fn=sparse_query_vectors,
)
llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
token=HUGGINGFACEHUB_API_TOKEN,
context_window=8096,
)
Settings.llm = llm
Settings.tokenzier = AutoTokenizer.from_pretrained(
"meta-llama/Meta-Llama-3-8B-Instruct"
)
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5", device="cpu")
Settings.embed_model = embed_model
index = VectorStoreIndex.from_vector_store(vector_store=vector_store,embed_model=embed_model)
from llama_index.core.memory import ChatMemoryBuffer
memory = ChatMemoryBuffer.from_defaults(token_limit=1500)
chat_engine = index.as_chat_engine(chat_mode="condense_question",
verbose=True,
memory=memory,
sparse_top_k=10,
vector_store_query_mode="hybrid",
similarity_top_k=3,
)
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
for message in st.session_state.messages: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = chat_engine.chat(prompt)
st.write(response.response)
message = {"role": "assistant", "content": response.response}
st.session_state.messages.append(message) # Add response to message history
|