wadood's picture
updated logo and logs
97d89f5
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, Tasks, WeightType, ClinicalTypes
from src.submission.check_validity import is_model_on_hub
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
dataset_results: dict
clinical_type_results:dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
backbone:str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
display_result:bool = True
@classmethod
def init_from_json_file(self, json_filepath, evaluation_metric):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
model_architecture = ModelArch.from_str(config.get("model_architecture"))
model_type = ModelType.from_str(config.get("model_type", ""))
# print(model_architecture, model_type)
license = config.get("license", "?")
num_params = config.get("num_params", "?")
display_result = config.get("display_result", True)
display_result = False if display_result=="False" else True
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("revision", "main"), trust_remote_code=True, test_tokenizer=False
)
backbone = "?"
if model_config is not None:
backbones = getattr(model_config, "architectures", None)
if backbones:
backbone = ";".join(backbones)
# Extract results available in this file (some results are split in several files)
dataset_results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data[evaluation_metric]["dataset_results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
dataset_results[task.benchmark] = mean_acc
types_results = {}
for clinical_type in ClinicalTypes:
clinical_type = clinical_type.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) # * 100.0
types_results[clinical_type.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
dataset_results=dataset_results,
clinical_type_results=types_results,
precision=precision,
revision=config.get("revision", ""),
still_on_hub=still_on_hub,
architecture=model_architecture,
backbone=backbone,
model_type=model_type,
num_params=num_params,
license=license,
display_result=display_result
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
# self.precision = request.get("precision", "float32")
except Exception:
pass
# print(
# f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
# )
# print(f" Args used were - {request_file=}, {requests_path=}, {self.full_model=},")
def to_dict(self, subset):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
if subset == "datasets":
average = sum([v for v in self.dataset_results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture.value.name,
AutoEvalColumn.backbone.name: self.backbone,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
"display_result" : self.display_result,
}
for task in Tasks:
data_dict[task.value.col_name] = self.dataset_results[task.value.benchmark]
return data_dict
if subset == "clinical_types":
average = sum([v for v in self.clinical_type_results.values() if v is not None]) / len(ClinicalTypes)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture.value.name,
AutoEvalColumn.backbone.name: self.backbone,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
"display_result" : self.display_result,
}
for clinical_type in ClinicalTypes:
data_dict[clinical_type.value.col_name] = self.clinical_type_results[clinical_type.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if req_content["status"] in ["FINISHED"] and req_content["precision"] == precision.split(".")[-1]:
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str, evaluation_metric: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath, evaluation_metric)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
# if eval_name in eval_results.keys():
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# else:
eval_results[eval_name] = eval_result
results = []
# clinical_type_results = []
for v in eval_results.values():
try:
v.to_dict(subset="dataset") # we test if the dict version is complete
if not v.display_result:
continue
results.append(v)
except KeyError: # not all eval values present
continue
return results