import os import streamlit as st import pandas as pd import numpy as np import plotly.express as px from sklearn.metrics.pairwise import paired_cosine_distances from sklearn.preprocessing import normalize from rolaser import RoLaserEncoder laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt" laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab" laser_tokenizer = 'spm' laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer) rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt" rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab" rolaser_tokenizer = 'roberta' rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer) c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt" c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab" c_rolaser_tokenizer = 'char' c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer) STD_SENTENCES = ['See you tomorrow.'] * 10 UGC_SENTENCES = [ 'See you t03orro3.', 'C. U. tomorrow.', 'sea you tomorrow.', 'See yo utomorrow.', 'See you tmrw.', 'See you tkmoerow.', 'Cu 2moro.', 'See yow tomorrow.', 'C. Yew tomorrow.', 'c ya 2morrow.' ] def add_text_inputs(i): col1, col2 = st.columns(2) with col1: text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i], label_visibility='collapsed') with col2: text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i], label_visibility='collapsed') return text_input1, text_input2 def main(): st.title('Pairwise Cosine Distance Calculator') info = ''' :bookmark: **Paper:** [Making Sentence Embeddings Robust to User-Generated Content (Nishimwe et al., 2024)](https://arxiv.org/abs/2403.17220) :link: **Github:** [https://github.com/lydianish/RoLASER](https://github.com/lydianish/RoLASER) This demo app computes text embeddings of sentence pairs using the LASER encoder and its robust students RoLASER and c-RoLASER. The pairwise cosine distances between the sentences are then computed and displayed. ''' st.markdown(info) st.header('Standard and Non-standard Text Input Pairs:') num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5) col1, col2 = st.columns(2) with col1: st.write('Enter standard text here:') with col2: st.write('Enter non-standard text here:') std_text_inputs = [] ugc_text_inputs = [] for i in range(num_pairs): pair = add_text_inputs(i) std_text_inputs.append(pair[0]) ugc_text_inputs.append(pair[1]) st.caption('*The models are case-insensitive: all text will be lowercased.*') if st.button('Submit'): X_std_laser = normalize(laser_model.encode(std_text_inputs)) X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs)) X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser) X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs)) X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs)) X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser) X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs)) X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs)) X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser) outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos']) outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs) outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3) outputs['std'] = np.tile(std_text_inputs, 3) outputs['ugc'] = np.tile(ugc_text_inputs, 3) outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser]) st.header('Cosine Distance Scores:') st.caption('*This bar plot is interactive: Hover on the bars to display values. Click on the legend items to filter models.*') fig = px.bar(outputs, x='pair', y='cos', color='model', barmode='group', hover_data=['ugc', 'std']) fig.update_xaxes(title_text='Text Input Pair') fig.update_yaxes(title_text='Cosine Distance') st.plotly_chart(fig, use_container_width=True) st.header('Average Cosine Distance Scores:') st.caption('*This data table is interactive: Click on a column header to sort values.*') st.write(outputs.groupby('model')['cos'].describe()) if __name__ == "__main__": main()