ChillTranslator / runpod_handler.py
Luke Stanley
Avoid unneeded imports, make serverless output more sensible, removing some debugging and comments
469f650
import runpod
from os import environ as env
import json
from pydantic import BaseModel, Field
class Movie(BaseModel):
title: str = Field(..., title="The title of the movie")
year: int = Field(..., title="The year the movie was released")
director: str = Field(..., title="The director of the movie")
genre: str = Field(..., title="The genre of the movie")
plot: str = Field(..., title="Plot summary of the movie")
def pydantic_model_to_json_schema(pydantic_model_class):
schema = pydantic_model_class.model_json_schema()
# Optional example field from schema, is not needed for the grammar generation
if "example" in schema:
del schema["example"]
json_schema = json.dumps(schema)
return json_schema
default_schema_example = """{ "title": ..., "year": ..., "director": ..., "genre": ..., "plot":...}"""
default_schema = pydantic_model_to_json_schema(Movie)
default_prompt = f"Instruct: \nOutput a JSON object in this format: {default_schema_example} for the following movie: The Matrix\nOutput:\n"
from utils import llm_stream_sans_network_simple
def handler(job):
""" Handler function that will be used to process jobs. """
job_input = job['input']
filename=env.get("MODEL_FILE", "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf")
prompt = job_input.get('prompt', default_prompt)
schema = job_input.get('schema', default_schema)
print("got this input", str(job_input))
print("prompt", prompt )
print("schema", schema )
output = llm_stream_sans_network_simple(prompt, schema)
#print("got this output", str(output))
return output
runpod.serverless.start({
"handler": handler,
#"return_aggregate_stream": True
})