File size: 5,474 Bytes
759e510
ac30aa7
 
 
 
 
 
 
759e510
 
 
ac30aa7
 
 
 
759e510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# %%
import asyncio
import json
import time
import os
import hashlib
from functools import wraps

import pandas as pd
from datasets import load_dataset
from detoxify import Detoxify

# TODO: Compare OpenAI's moderation API to Detoxify


predict_model = Detoxify('original-small')
dataset = load_dataset("tasksource/jigsaw")

train_data = dataset['train'] 
print('length',len(train_data)) # length 159571
print(train_data[0]) # {'id': '0000997932d777bf', 'comment_text': "Explanation\nWhy the edits made under my username Hardcore Metallica Fan were reverted? They weren't vandalisms, just closure on some GAs after I voted at New York Dolls FAC. And please don't remove the template from the talk page since I'm retired now.89.205.38.27", 'toxic': 0, 'severe_toxic': 0, 'obscene': 0, 'threat': 0, 'insult': 0, 'identity_hate': 0}

small_subset = train_data[:2000]

predict_model.predict("You suck, that is not Markdown!") # Also accepts an array of strings, returning an single dict of arrays of predictions.
# Returns:
{'toxicity': 0.98870254,
 'severe_toxicity': 0.087154716,
 'obscene': 0.93440753,
 'threat': 0.0032278204,
 'insult': 0.7787105,
 'identity_attack': 0.007936229}



_in_memory_cache = {}

def handle_cache(prefix, func, *args, _result=None, **kwargs):
    # Generate a key based on function name and arguments
    key = f"{func.__name__}_{args}_{kwargs}"
    hashed_key = hashlib.sha1(key.encode()).hexdigest()
    cache_filename = f"{prefix}_{hashed_key}.json"

    # Check the in-memory cache first
    if key in _in_memory_cache:
        return _in_memory_cache[key]

    # Check if cache file exists and read data
    if os.path.exists(cache_filename):
        with open(cache_filename, 'r') as file:
            #print("Reading from cache file with prefix", prefix)
            _in_memory_cache[key] = json.load(file)
            return _in_memory_cache[key]

    # If result is not provided (for sync functions), compute it
    if _result is None:
        _result = func(*args, **kwargs)

    # Update the in-memory cache and write it to the file
    _in_memory_cache[key] = _result
    with open(cache_filename, 'w') as file:
        json.dump(_result, file)

    return _result




def cache(prefix):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            # Direct call to the shared cache handling function
            return handle_cache(prefix, func, *args, **kwargs)
        return wrapper
    return decorator





@cache("toxicity")
def cached_toxicity_prediction(comments):
    data = predict_model.predict(comments)
    return data

def predict_toxicity(comments, batch_size=4):
    """
    Predicts toxicity scores for a list of comments.
    
    Args:
    - comments: List of comment texts.
    - batch_size: Size of batches for prediction to manage memory usage.
    
    Returns:
    A DataFrame with the original comments and their predicted toxicity scores.
    """
    results = {'comment_text': [], 'toxicity': [], 'severe_toxicity': [], 'obscene': [], 'threat': [], 'insult': [], 'identity_attack': []}
    for i in range(0, len(comments), batch_size):
        batch_comments = comments[i:i+batch_size]
        predictions = cached_toxicity_prediction(batch_comments)
        # We convert the JSON serializable data back to a DataFrame:
        results['comment_text'].extend(batch_comments)
        for key in predictions.keys():
            results[key].extend(predictions[key])
    return pd.DataFrame(results)

# Predict toxicity scores for the small subset of comments:
#small_subset_predictions = predict_toxicity(small_subset['comment_text'][4])
# Let's just try out 4 comments with cached_toxicity_prediction:
small_subset['comment_text'][0:1]

# %%
small_subset_predictions=predict_toxicity(small_subset['comment_text'][0:200])

# %%
small_subset_predictions

# %%
def filter_comments(dataframe, toxicity_threshold=0.2, severe_toxicity_threshold=0.4):
    """
    Filters comments based on specified thresholds for toxicity, severe toxicity.
    
    Args:
    - dataframe: DataFrame containing comments and their toxicity scores.
    - toxicity_threshold: Toxicity score threshold.
    - severe_toxicity_threshold: Severe toxicity score threshold.
    - identity_attack_threshold: Identity attack score threshold.
    
    Returns:
    DataFrame filtered based on the specified thresholds.
    """
    identity_attack_threshold = 0.5
    insult_threshold = 0.3
    obscene_threshold = 0.6
    threat_threshold = 0.3
    filtered_df = dataframe[
        (dataframe['toxicity'] >= toxicity_threshold) &
        #(dataframe['toxicity'] < 1.0) &  # Ensure comments are spicy but not 100% toxic
        (dataframe['severe_toxicity'] < severe_toxicity_threshold) &
        (dataframe['identity_attack'] < identity_attack_threshold) &
        (dataframe['insult'] < insult_threshold) &
        (dataframe['obscene'] < obscene_threshold) &
        (dataframe['threat'] < threat_threshold)

    ]
    return filtered_df

spicy_comments = filter_comments(small_subset_predictions)


# Lets sort spicy comments by combined toxicity score:
spicy_comments.sort_values(by=['toxicity', 'severe_toxicity'], ascending=True, inplace=True)

# Print the spicy comments comment_text and their toxicity scores as a formatted string:
for index, row in spicy_comments.iterrows():
    print(f"Comment: `{row['comment_text']}` \n Toxiciy: {(row['toxicity'] + row['severe_toxicity']) / 2 * 100:.0f}% \n")