Spaces:
Running
Running
v1, sd1.5
Browse files- Atkinson-Hyperlegible-Bold-102.otf +0 -0
- app.py +116 -0
- requirements.txt +5 -0
Atkinson-Hyperlegible-Bold-102.otf
ADDED
Binary file (36.6 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance
|
5 |
+
from quanto import qfloat8, quantize, freeze
|
6 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
7 |
+
from diffusers.utils import make_image_grid
|
8 |
+
|
9 |
+
atkbold = ImageFont.truetype("Atkinson-Hyperlegible-Bold-102.otf",50)
|
10 |
+
|
11 |
+
default_width = 1024
|
12 |
+
default_height = 768
|
13 |
+
default_timesteps = 8
|
14 |
+
|
15 |
+
def mask_image_factory(mask_text="ASK FOR\nA SNACK", width=default_width, height=default_height):
|
16 |
+
img = Image.new("L", (width, height), (0,))
|
17 |
+
draw = ImageDraw.Draw(img)
|
18 |
+
draw.multiline_text(
|
19 |
+
xy=(0,0),
|
20 |
+
text=mask_text,
|
21 |
+
fill=(255,),
|
22 |
+
font=atkbold,
|
23 |
+
align="center",
|
24 |
+
spacing=0,
|
25 |
+
)
|
26 |
+
cropped = img.crop(img.getbbox())
|
27 |
+
# Calculate aspect ratios
|
28 |
+
image_aspect_ratio = width / height
|
29 |
+
cropped_aspect_ratio = cropped.size[0] / cropped.size[1]
|
30 |
+
|
31 |
+
# Determine which dimension of cropped.size is larger
|
32 |
+
if cropped_aspect_ratio > image_aspect_ratio:
|
33 |
+
# Calculate new dimensions for padding
|
34 |
+
new_width = int(cropped.size[1] * image_aspect_ratio)
|
35 |
+
new_height = cropped.size[1]
|
36 |
+
else:
|
37 |
+
new_width = cropped.size[0]
|
38 |
+
new_height = int(cropped.size[0] / image_aspect_ratio)
|
39 |
+
|
40 |
+
# Pad the image to the desired aspect ratio
|
41 |
+
padded = ImageOps.pad(cropped, (new_width, new_height))
|
42 |
+
|
43 |
+
resized = padded.resize((width, height), resample=Image.Resampling.LANCZOS)
|
44 |
+
return resized
|
45 |
+
|
46 |
+
preferred_device = "cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
|
47 |
+
preferred_device = "cpu"
|
48 |
+
preferred_dtype = torch.float32
|
49 |
+
|
50 |
+
controlnet = ControlNetModel.from_pretrained(
|
51 |
+
"monster-labs/control_v1p_sd15_qrcode_monster",
|
52 |
+
# "monster-labs/control_v1p_sdxl_qrcode_monster",
|
53 |
+
subfolder="v2",
|
54 |
+
torch_dtype=preferred_dtype,
|
55 |
+
#torch_dtype=unet_preferred_dtype
|
56 |
+
).to(preferred_device)
|
57 |
+
|
58 |
+
#quantize(controlnet, weights=qfloat8)
|
59 |
+
#freeze(controlnet)
|
60 |
+
|
61 |
+
ctlpipe = StableDiffusionControlNetPipeline.from_pretrained(
|
62 |
+
"SimianLuo/LCM_Dreamshaper_v7",
|
63 |
+
controlnet=controlnet,
|
64 |
+
torch_dtype=preferred_dtype,
|
65 |
+
safety_checker=None,
|
66 |
+
).to(preferred_device)
|
67 |
+
|
68 |
+
#quantize(ctlpipe.unet, weights=qfloat8)
|
69 |
+
#freeze(ctlpipe.unet)
|
70 |
+
#quantize(ctlpipe.text_encoder, weights=qfloat8)
|
71 |
+
#freeze(ctlpipe.text_encoder)
|
72 |
+
|
73 |
+
def app(prompt, negative_prompt, mask_text, num_inference_steps, controlnet_conditioning_scale, width, height, seed, count):
|
74 |
+
all_images = [ctlpipe(
|
75 |
+
prompt=prompt,
|
76 |
+
negative_prompt=negative_prompt,
|
77 |
+
image=mask_image_factory(mask_text=mask_text, width=width, height=height),
|
78 |
+
num_inference_steps=int(num_inference_steps),
|
79 |
+
guidance_scale=8.0,
|
80 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
81 |
+
generator=torch.manual_seed(int(seed + i)),
|
82 |
+
height=height,
|
83 |
+
width=width,
|
84 |
+
).images[0] for i in range(count)]
|
85 |
+
if count == 1:
|
86 |
+
cols = 1
|
87 |
+
rows = 1
|
88 |
+
elif count == 2:
|
89 |
+
cols = 1
|
90 |
+
rows = 2
|
91 |
+
else:
|
92 |
+
cols = 2 if count % 2 == 0 else 1
|
93 |
+
rows = count // cols
|
94 |
+
return make_image_grid(all_images, cols=cols, rows=rows)
|
95 |
+
|
96 |
+
|
97 |
+
app("corgis running in the park", "ugly, wrong", "ASK FOR\nA SNACK", 1, 1.0, default_height, default_width, 42, 1)
|
98 |
+
|
99 |
+
iface = gr.Interface(
|
100 |
+
app,
|
101 |
+
[
|
102 |
+
gr.Textbox(label="Prompt", value="corgis running in a flower-filled meadow at golden hour"),
|
103 |
+
gr.Textbox(label="Negative Prompt", value="ugly, wrong"),
|
104 |
+
gr.Textbox(label="Mask Text", value="ASK FOR\nA SNACK"),
|
105 |
+
gr.Number(label="Number of Inference Steps", value=default_timesteps, minimum=1, maximum=50, step=1),
|
106 |
+
gr.Slider(label="ControlNet Conditioning Scale", value=0.5, minimum=-1.0, maximum=2.0, step=0.01),
|
107 |
+
gr.Number(label="Width", value=default_width, minimum=256, maximum=2048, precision=0),
|
108 |
+
gr.Number(label="Height", value=default_height, minimum=256, maximum=2048, precision=0),
|
109 |
+
gr.Number(label="Random Number Seed", value=42, minimum=0, maximum=2**32-1, precision=0),
|
110 |
+
gr.Radio(label="Number of Images to Generate with Subsequent Consecutive Seeds", choices=[1, 2, 4, 6, 10], value=2),
|
111 |
+
],
|
112 |
+
"image",
|
113 |
+
)
|
114 |
+
|
115 |
+
iface.launch()
|
116 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
diffusers
|
3 |
+
accelerate
|
4 |
+
optimum
|
5 |
+
quanto
|