qianhuiwu commited on
Commit
9ecb996
1 Parent(s): ee1e26e

Update readme.

Browse files
Files changed (1) hide show
  1. README.md +5 -22
README.md CHANGED
@@ -13,39 +13,22 @@ license: cc-by-nc-sa-4.0
13
  <!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference -->
14
 
15
  LLMLingua-2 is a branch of work from project:
16
- # [LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression](https://llmlingua.com/)
17
- <!-- <div style="display: flex; align-items: center;">
18
- <div style="width: 100px; margin-right: 10px; height:auto;" align="left">
19
- <img src="images/LLMLingua_logo.png" alt="LLMLingua" width="100" align="left">
20
- </div>
21
- <div style="flex-grow: 1;" align="center">
22
- <h2 align="center">LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression</h2>
23
- </div>
24
- </div> -->
25
- <!-- <p align="center">
26
- | <a href="https://llmlingua.com/"><b>Project Page</b></a> |
27
- <a href="https://aclanthology.org/2023.emnlp-main.825/"><b>LLMLingua</b></a> |
28
- <a href="https://arxiv.org/abs/2310.06839"><b>LongLLMLingua</b></a> |
29
- <a href="https://arxiv.org/abs/2403."><b>LLMLingua-2</b></a> |
30
- <a href="https://huggingface.co/spaces/microsoft/LLMLingua"><b>LLMLingua Demo</b></a> |
31
- <a href="https://huggingface.co/spaces/microsoft/LLMLingua-2"><b>LLMLingua-2 Demo</b></a> |
32
- </p> -->
33
  | [**Project Page**](https://llmlingua.com/) | [**LLMLingua**](https://aclanthology.org/2023.emnlp-main.825/) | [**LongLLMLingua**](https://arxiv.org/abs/2310.06839) | [**LLMLingua-2**](https://arxiv.org/abs/2403.12968) | [**LLMLingua Demo**](https://huggingface.co/spaces/microsoft/LLMLingua) | [**LLMLingua-2 Demo**](https://huggingface.co/spaces/microsoft/LLMLingua-2) |
34
 
35
- Check the links above for more information.
36
- ## Brief Introduction
 
37
 
38
  **LLMLingua** utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
39
-
40
  - [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://aclanthology.org/2023.emnlp-main.825/) (EMNLP 2023)<br>
41
  _Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
42
 
43
  **LongLLMLingua** mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens.
44
-
45
  - [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br>
46
  _Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
47
 
48
  **LLMLingua-2**, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.
49
-
50
  - [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br>
51
  _Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_
 
13
  <!-- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference -->
14
 
15
  LLMLingua-2 is a branch of work from project:
16
+
17
+ # LLMLingua Series | Effectively Deliver Information to LLMs via Prompt Compression
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  | [**Project Page**](https://llmlingua.com/) | [**LLMLingua**](https://aclanthology.org/2023.emnlp-main.825/) | [**LongLLMLingua**](https://arxiv.org/abs/2310.06839) | [**LLMLingua-2**](https://arxiv.org/abs/2403.12968) | [**LLMLingua Demo**](https://huggingface.co/spaces/microsoft/LLMLingua) | [**LLMLingua-2 Demo**](https://huggingface.co/spaces/microsoft/LLMLingua-2) |
19
 
20
+ Check the links above for more information!
21
+
22
+ ## Brief Introduction 📚
23
 
24
  **LLMLingua** utilizes a compact, well-trained language model (e.g., GPT2-small, LLaMA-7B) to identify and remove non-essential tokens in prompts. This approach enables efficient inference with large language models (LLMs), achieving up to 20x compression with minimal performance loss.
 
25
  - [LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models](https://aclanthology.org/2023.emnlp-main.825/) (EMNLP 2023)<br>
26
  _Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
27
 
28
  **LongLLMLingua** mitigates the 'lost in the middle' issue in LLMs, enhancing long-context information processing. It reduces costs and boosts efficiency with prompt compression, improving RAG performance by up to 21.4% using only 1/4 of the tokens.
 
29
  - [LongLLMLingua: Accelerating and Enhancing LLMs in Long Context Scenarios via Prompt Compression](https://arxiv.org/abs/2310.06839) (ICLR ME-FoMo 2024)<br>
30
  _Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
31
 
32
  **LLMLingua-2**, a small-size yet powerful prompt compression method trained via data distillation from GPT-4 for token classification with a BERT-level encoder, excels in task-agnostic compression. It surpasses LLMLingua in handling out-of-domain data, offering 3x-6x faster performance.
 
33
  - [LLMLingua-2: Context-Aware Data Distillation for Efficient and Faithful Task-Agnostic Prompt Compression](https://arxiv.org/abs/2403.) (Under Review)<br>
34
  _Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, Dongmei Zhang_