Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
import sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import traceback, pdb | |
import warnings | |
import numpy as np | |
import torch | |
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" | |
import logging | |
import threading | |
from random import shuffle | |
from subprocess import Popen | |
from time import sleep | |
import faiss | |
import ffmpeg | |
import gradio as gr | |
import soundfile as sf | |
from config import Config | |
from fairseq import checkpoint_utils | |
from i18n import I18nAuto | |
from infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from infer_pack.models_onnx import SynthesizerTrnMsNSFsidM | |
from infer_uvr5 import _audio_pre_, _audio_pre_new | |
from MDXNet import MDXNetDereverb | |
from my_utils import load_audio | |
from train.process_ckpt import change_info, extract_small_model, merge, show_info | |
from vc_infer_pipeline import VC | |
from sklearn.cluster import MiniBatchKMeans | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
tmp = os.path.join(now_dir, "TEMP") | |
shutil.rmtree(tmp, ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) | |
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True) | |
os.makedirs(tmp, exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) | |
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True) | |
os.environ["TEMP"] = tmp | |
warnings.filterwarnings("ignore") | |
torch.manual_seed(114514) | |
config = Config() | |
i18n = I18nAuto() | |
i18n.print() | |
# 判断是否有能用来训练和加速推理的N卡 | |
ngpu = torch.cuda.device_count() | |
gpu_infos = [] | |
mem = [] | |
if_gpu_ok = False | |
if torch.cuda.is_available() or ngpu != 0: | |
for i in range(ngpu): | |
gpu_name = torch.cuda.get_device_name(i) | |
if any( | |
value in gpu_name.upper() | |
for value in [ | |
"10", | |
"16", | |
"20", | |
"30", | |
"40", | |
"A2", | |
"A3", | |
"A4", | |
"P4", | |
"A50", | |
"500", | |
"A60", | |
"70", | |
"80", | |
"90", | |
"M4", | |
"T4", | |
"TITAN", | |
] | |
): | |
# A10#A100#V100#A40#P40#M40#K80#A4500 | |
if_gpu_ok = True # 至少有一张能用的N卡 | |
gpu_infos.append("%s\t%s" % (i, gpu_name)) | |
mem.append( | |
int( | |
torch.cuda.get_device_properties(i).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
) | |
if if_gpu_ok and len(gpu_infos) > 0: | |
gpu_info = "\n".join(gpu_infos) | |
default_batch_size = min(mem) // 2 | |
else: | |
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练") | |
default_batch_size = 1 | |
gpus = "-".join([i[0] for i in gpu_infos]) | |
class ToolButton(gr.Button, gr.components.FormComponent): | |
"""Small button with single emoji as text, fits inside gradio forms""" | |
def __init__(self, **kwargs): | |
super().__init__(variant="tool", **kwargs) | |
def get_block_name(self): | |
return "button" | |
hubert_model = None | |
def load_hubert(): | |
global hubert_model | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
weight_root = "weights" | |
weight_uvr5_root = "uvr5_weights" | |
index_root = "logs" | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
uvr5_names = [] | |
for name in os.listdir(weight_uvr5_root): | |
if name.endswith(".pth") or "onnx" in name: | |
uvr5_names.append(name.replace(".pth", "")) | |
def vc_single( | |
sid, | |
input_audio_path, | |
f0_up_key, | |
f0_file, | |
f0_method, | |
file_index, | |
file_index2, | |
# file_big_npy, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0 | |
global tgt_sr, net_g, vc, hubert_model, version | |
if input_audio_path is None: | |
return "You need to upload an audio", None | |
f0_up_key = int(f0_up_key) | |
try: | |
audio = load_audio(input_audio_path, 16000) | |
audio_max = np.abs(audio).max() / 0.95 | |
if audio_max > 1: | |
audio /= audio_max | |
times = [0, 0, 0] | |
if not hubert_model: | |
load_hubert() | |
if_f0 = cpt.get("f0", 1) | |
file_index = ( | |
( | |
file_index.strip(" ") | |
.strip('"') | |
.strip("\n") | |
.strip('"') | |
.strip(" ") | |
.replace("trained", "added") | |
) | |
if file_index != "" | |
else file_index2 | |
) # 防止小白写错,自动帮他替换掉 | |
# file_big_npy = ( | |
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
# ) | |
audio_opt = vc.pipeline( | |
hubert_model, | |
net_g, | |
sid, | |
audio, | |
input_audio_path, | |
times, | |
f0_up_key, | |
f0_method, | |
file_index, | |
# file_big_npy, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
f0_file=f0_file, | |
) | |
if tgt_sr != resample_sr >= 16000: | |
tgt_sr = resample_sr | |
index_info = ( | |
"Using index:%s." % file_index | |
if os.path.exists(file_index) | |
else "Index not used." | |
) | |
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( | |
index_info, | |
times[0], | |
times[1], | |
times[2], | |
), (tgt_sr, audio_opt) | |
except: | |
info = traceback.format_exc() | |
print(info) | |
return info, (None, None) | |
def vc_multi( | |
sid, | |
dir_path, | |
opt_root, | |
paths, | |
f0_up_key, | |
f0_method, | |
file_index, | |
file_index2, | |
# file_big_npy, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
format1, | |
): | |
try: | |
dir_path = ( | |
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) # 防止小白拷路径头尾带了空格和"和回车 | |
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
os.makedirs(opt_root, exist_ok=True) | |
try: | |
if dir_path != "": | |
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)] | |
else: | |
paths = [path.name for path in paths] | |
except: | |
traceback.print_exc() | |
paths = [path.name for path in paths] | |
infos = [] | |
for path in paths: | |
info, opt = vc_single( | |
sid, | |
path, | |
f0_up_key, | |
None, | |
f0_method, | |
file_index, | |
file_index2, | |
# file_big_npy, | |
index_rate, | |
filter_radius, | |
resample_sr, | |
rms_mix_rate, | |
protect, | |
) | |
if "Success" in info: | |
try: | |
tgt_sr, audio_opt = opt | |
if format1 in ["wav", "flac"]: | |
sf.write( | |
"%s/%s.%s" % (opt_root, os.path.basename(path), format1), | |
audio_opt, | |
tgt_sr, | |
) | |
else: | |
path = "%s/%s.wav" % (opt_root, os.path.basename(path)) | |
sf.write( | |
path, | |
audio_opt, | |
tgt_sr, | |
) | |
if os.path.exists(path): | |
os.system( | |
"ffmpeg -i %s -vn %s -q:a 2 -y" | |
% (path, path[:-4] + ".%s" % format1) | |
) | |
except: | |
info += traceback.format_exc() | |
infos.append("%s->%s" % (os.path.basename(path), info)) | |
yield "\n".join(infos) | |
yield "\n".join(infos) | |
except: | |
yield traceback.format_exc() | |
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): | |
infos = [] | |
try: | |
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
save_root_vocal = ( | |
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) | |
save_root_ins = ( | |
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") | |
) | |
if model_name == "onnx_dereverb_By_FoxJoy": | |
pre_fun = MDXNetDereverb(15) | |
else: | |
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new | |
pre_fun = func( | |
agg=int(agg), | |
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"), | |
device=config.device, | |
is_half=config.is_half, | |
) | |
if inp_root != "": | |
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] | |
else: | |
paths = [path.name for path in paths] | |
for path in paths: | |
inp_path = os.path.join(inp_root, path) | |
need_reformat = 1 | |
done = 0 | |
try: | |
info = ffmpeg.probe(inp_path, cmd="ffprobe") | |
if ( | |
info["streams"][0]["channels"] == 2 | |
and info["streams"][0]["sample_rate"] == "44100" | |
): | |
need_reformat = 0 | |
pre_fun._path_audio_( | |
inp_path, save_root_ins, save_root_vocal, format0 | |
) | |
done = 1 | |
except: | |
need_reformat = 1 | |
traceback.print_exc() | |
if need_reformat == 1: | |
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path)) | |
os.system( | |
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" | |
% (inp_path, tmp_path) | |
) | |
inp_path = tmp_path | |
try: | |
if done == 0: | |
pre_fun._path_audio_( | |
inp_path, save_root_ins, save_root_vocal, format0 | |
) | |
infos.append("%s->Success" % (os.path.basename(inp_path))) | |
yield "\n".join(infos) | |
except: | |
infos.append( | |
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) | |
) | |
yield "\n".join(infos) | |
except: | |
infos.append(traceback.format_exc()) | |
yield "\n".join(infos) | |
finally: | |
try: | |
if model_name == "onnx_dereverb_By_FoxJoy": | |
del pre_fun.pred.model | |
del pre_fun.pred.model_ | |
else: | |
del pre_fun.model | |
del pre_fun | |
except: | |
traceback.print_exc() | |
print("clean_empty_cache") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
yield "\n".join(infos) | |
# 一个选项卡全局只能有一个音色 | |
def get_vc(sid, to_return_protect0, to_return_protect1): | |
global n_spk, tgt_sr, net_g, vc, cpt, version | |
if sid == "" or sid == []: | |
global hubert_model | |
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的 | |
print("clean_empty_cache") | |
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt | |
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
###楼下不这么折腾清理不干净 | |
if_f0 = cpt.get("f0", 1) | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g, cpt | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
cpt = None | |
return {"visible": False, "__type__": "update"} | |
person = "%s/%s" % (weight_root, sid) | |
print("loading %s" % person) | |
cpt = torch.load(person, map_location="cpu") | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
if_f0 = cpt.get("f0", 1) | |
if if_f0 == 0: | |
to_return_protect0 = to_return_protect1 = { | |
"visible": False, | |
"value": 0.5, | |
"__type__": "update", | |
} | |
else: | |
to_return_protect0 = { | |
"visible": True, | |
"value": to_return_protect0, | |
"__type__": "update", | |
} | |
to_return_protect1 = { | |
"visible": True, | |
"value": to_return_protect1, | |
"__type__": "update", | |
} | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g.enc_q | |
print(net_g.load_state_dict(cpt["weight"], strict=False)) | |
net_g.eval().to(config.device) | |
if config.is_half: | |
net_g = net_g.half() | |
else: | |
net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
n_spk = cpt["config"][-3] | |
return ( | |
{"visible": True, "maximum": n_spk, "__type__": "update"}, | |
to_return_protect0, | |
to_return_protect1, | |
) | |
def change_choices(): | |
names = [] | |
for name in os.listdir(weight_root): | |
if name.endswith(".pth"): | |
names.append(name) | |
index_paths = [] | |
for root, dirs, files in os.walk(index_root, topdown=False): | |
for name in files: | |
if name.endswith(".index") and "trained" not in name: | |
index_paths.append("%s/%s" % (root, name)) | |
return {"choices": sorted(names), "__type__": "update"}, { | |
"choices": sorted(index_paths), | |
"__type__": "update", | |
} | |
def clean(): | |
return {"value": "", "__type__": "update"} | |
sr_dict = { | |
"32k": 32000, | |
"40k": 40000, | |
"48k": 48000, | |
} | |
def if_done(done, p): | |
while 1: | |
if p.poll() is None: | |
sleep(0.5) | |
else: | |
break | |
done[0] = True | |
def if_done_multi(done, ps): | |
while 1: | |
# poll==None代表进程未结束 | |
# 只要有一个进程未结束都不停 | |
flag = 1 | |
for p in ps: | |
if p.poll() is None: | |
flag = 0 | |
sleep(0.5) | |
break | |
if flag == 1: | |
break | |
done[0] = True | |
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p): | |
sr = sr_dict[sr] | |
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w") | |
f.close() | |
cmd = ( | |
config.python_cmd | |
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s " | |
% (trainset_dir, sr, n_p, now_dir, exp_dir) | |
+ str(config.noparallel) | |
) | |
print(cmd) | |
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done, | |
args=( | |
done, | |
p, | |
), | |
).start() | |
while 1: | |
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
print(log) | |
yield log | |
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2]) | |
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19): | |
gpus = gpus.split("-") | |
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True) | |
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w") | |
f.close() | |
if if_f0: | |
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % ( | |
now_dir, | |
exp_dir, | |
n_p, | |
f0method, | |
) | |
print(cmd) | |
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done, | |
args=( | |
done, | |
p, | |
), | |
).start() | |
while 1: | |
with open( | |
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r" | |
) as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
print(log) | |
yield log | |
####对不同part分别开多进程 | |
""" | |
n_part=int(sys.argv[1]) | |
i_part=int(sys.argv[2]) | |
i_gpu=sys.argv[3] | |
exp_dir=sys.argv[4] | |
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu) | |
""" | |
leng = len(gpus) | |
ps = [] | |
for idx, n_g in enumerate(gpus): | |
cmd = ( | |
config.python_cmd | |
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s" | |
% ( | |
config.device, | |
leng, | |
idx, | |
n_g, | |
now_dir, | |
exp_dir, | |
version19, | |
) | |
) | |
print(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
ps.append(p) | |
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读 | |
done = [False] | |
threading.Thread( | |
target=if_done_multi, | |
args=( | |
done, | |
ps, | |
), | |
).start() | |
while 1: | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
yield (f.read()) | |
sleep(1) | |
if done[0]: | |
break | |
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f: | |
log = f.read() | |
print(log) | |
yield log | |
def change_sr2(sr2, if_f0_3, version19): | |
path_str = "" if version19 == "v1" else "_v2" | |
f0_str = "f0" if if_f0_3 else "" | |
if_pretrained_generator_exist = os.access( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if_pretrained_discriminator_exist = os.access( | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if not if_pretrained_generator_exist: | |
print( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
if not if_pretrained_discriminator_exist: | |
print( | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
return ( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_generator_exist | |
else "", | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_discriminator_exist | |
else "", | |
) | |
def change_version19(sr2, if_f0_3, version19): | |
path_str = "" if version19 == "v1" else "_v2" | |
if sr2 == "32k" and version19 == "v1": | |
sr2 = "40k" | |
to_return_sr2 = ( | |
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2} | |
if version19 == "v1" | |
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2} | |
) | |
f0_str = "f0" if if_f0_3 else "" | |
if_pretrained_generator_exist = os.access( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if_pretrained_discriminator_exist = os.access( | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK | |
) | |
if not if_pretrained_generator_exist: | |
print( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
if not if_pretrained_discriminator_exist: | |
print( | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
return ( | |
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_generator_exist | |
else "", | |
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2) | |
if if_pretrained_discriminator_exist | |
else "", | |
to_return_sr2, | |
) | |
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15 | |
path_str = "" if version19 == "v1" else "_v2" | |
if_pretrained_generator_exist = os.access( | |
"pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK | |
) | |
if_pretrained_discriminator_exist = os.access( | |
"pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK | |
) | |
if not if_pretrained_generator_exist: | |
print( | |
"pretrained%s/f0G%s.pth" % (path_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
if not if_pretrained_discriminator_exist: | |
print( | |
"pretrained%s/f0D%s.pth" % (path_str, sr2), | |
"not exist, will not use pretrained model", | |
) | |
if if_f0_3: | |
return ( | |
{"visible": True, "__type__": "update"}, | |
"pretrained%s/f0G%s.pth" % (path_str, sr2) | |
if if_pretrained_generator_exist | |
else "", | |
"pretrained%s/f0D%s.pth" % (path_str, sr2) | |
if if_pretrained_discriminator_exist | |
else "", | |
) | |
return ( | |
{"visible": False, "__type__": "update"}, | |
("pretrained%s/G%s.pth" % (path_str, sr2)) | |
if if_pretrained_generator_exist | |
else "", | |
("pretrained%s/D%s.pth" % (path_str, sr2)) | |
if if_pretrained_discriminator_exist | |
else "", | |
) | |
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16]) | |
def click_train( | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
spk_id5, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
): | |
# 生成filelist | |
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
os.makedirs(exp_dir, exist_ok=True) | |
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir) | |
feature_dir = ( | |
"%s/3_feature256" % (exp_dir) | |
if version19 == "v1" | |
else "%s/3_feature768" % (exp_dir) | |
) | |
if if_f0_3: | |
f0_dir = "%s/2a_f0" % (exp_dir) | |
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir) | |
names = ( | |
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
) | |
else: | |
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
[name.split(".")[0] for name in os.listdir(feature_dir)] | |
) | |
opt = [] | |
for name in names: | |
if if_f0_3: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
f0_dir.replace("\\", "\\\\"), | |
name, | |
f0nsf_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
else: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
fea_dim = 256 if version19 == "v1" else 768 | |
if if_f0_3: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | |
) | |
else: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, spk_id5) | |
) | |
shuffle(opt) | |
with open("%s/filelist.txt" % exp_dir, "w") as f: | |
f.write("\n".join(opt)) | |
print("write filelist done") | |
# 生成config#无需生成config | |
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0" | |
print("use gpus:", gpus16) | |
if pretrained_G14 == "": | |
print("no pretrained Generator") | |
if pretrained_D15 == "": | |
print("no pretrained Discriminator") | |
if gpus16: | |
cmd = ( | |
config.python_cmd | |
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | |
% ( | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
gpus16, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
else: | |
cmd = ( | |
config.python_cmd | |
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | |
% ( | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "\b", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "\b", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
print(cmd) | |
p = Popen(cmd, shell=True, cwd=now_dir) | |
p.wait() | |
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" | |
# but4.click(train_index, [exp_dir1], info3) | |
def train_index(exp_dir1, version19): | |
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
os.makedirs(exp_dir, exist_ok=True) | |
feature_dir = ( | |
"%s/3_feature256" % (exp_dir) | |
if version19 == "v1" | |
else "%s/3_feature768" % (exp_dir) | |
) | |
if not os.path.exists(feature_dir): | |
return "请先进行特征提取!" | |
listdir_res = list(os.listdir(feature_dir)) | |
if len(listdir_res) == 0: | |
return "请先进行特征提取!" | |
infos = [] | |
npys = [] | |
for name in sorted(listdir_res): | |
phone = np.load("%s/%s" % (feature_dir, name)) | |
npys.append(phone) | |
big_npy = np.concatenate(npys, 0) | |
big_npy_idx = np.arange(big_npy.shape[0]) | |
np.random.shuffle(big_npy_idx) | |
big_npy = big_npy[big_npy_idx] | |
if big_npy.shape[0] > 2e5: | |
# if(1): | |
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]) | |
yield "\n".join(infos) | |
try: | |
big_npy = ( | |
MiniBatchKMeans( | |
n_clusters=10000, | |
verbose=True, | |
batch_size=256 * config.n_cpu, | |
compute_labels=False, | |
init="random", | |
) | |
.fit(big_npy) | |
.cluster_centers_ | |
) | |
except: | |
info = traceback.format_exc() | |
print(info) | |
infos.append(info) | |
yield "\n".join(infos) | |
np.save("%s/total_fea.npy" % exp_dir, big_npy) | |
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
infos.append("%s,%s" % (big_npy.shape, n_ivf)) | |
yield "\n".join(infos) | |
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | |
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf) | |
infos.append("training") | |
yield "\n".join(infos) | |
index_ivf = faiss.extract_index_ivf(index) # | |
index_ivf.nprobe = 1 | |
index.train(big_npy) | |
faiss.write_index( | |
index, | |
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) | |
infos.append("adding") | |
yield "\n".join(infos) | |
batch_size_add = 8192 | |
for i in range(0, big_npy.shape[0], batch_size_add): | |
index.add(big_npy[i : i + batch_size_add]) | |
faiss.write_index( | |
index, | |
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
infos.append( | |
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) | |
) | |
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19)) | |
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19)) | |
yield "\n".join(infos) | |
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) | |
def train1key( | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
trainset_dir4, | |
spk_id5, | |
np7, | |
f0method8, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
): | |
infos = [] | |
def get_info_str(strr): | |
infos.append(strr) | |
return "\n".join(infos) | |
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1) | |
preprocess_log_path = "%s/preprocess.log" % model_log_dir | |
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir | |
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir | |
feature_dir = ( | |
"%s/3_feature256" % model_log_dir | |
if version19 == "v1" | |
else "%s/3_feature768" % model_log_dir | |
) | |
os.makedirs(model_log_dir, exist_ok=True) | |
#########step1:处理数据 | |
open(preprocess_log_path, "w").close() | |
cmd = ( | |
config.python_cmd | |
+ " trainset_preprocess_pipeline_print.py %s %s %s %s " | |
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir) | |
+ str(config.noparallel) | |
) | |
yield get_info_str(i18n("step1:正在处理数据")) | |
yield get_info_str(cmd) | |
p = Popen(cmd, shell=True) | |
p.wait() | |
with open(preprocess_log_path, "r") as f: | |
print(f.read()) | |
#########step2a:提取音高 | |
open(extract_f0_feature_log_path, "w") | |
if if_f0_3: | |
yield get_info_str("step2a:正在提取音高") | |
cmd = config.python_cmd + " extract_f0_print.py %s %s %s" % ( | |
model_log_dir, | |
np7, | |
f0method8, | |
) | |
yield get_info_str(cmd) | |
p = Popen(cmd, shell=True, cwd=now_dir) | |
p.wait() | |
with open(extract_f0_feature_log_path, "r") as f: | |
print(f.read()) | |
else: | |
yield get_info_str(i18n("step2a:无需提取音高")) | |
#######step2b:提取特征 | |
yield get_info_str(i18n("step2b:正在提取特征")) | |
gpus = gpus16.split("-") | |
leng = len(gpus) | |
ps = [] | |
for idx, n_g in enumerate(gpus): | |
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % ( | |
config.device, | |
leng, | |
idx, | |
n_g, | |
model_log_dir, | |
version19, | |
) | |
yield get_info_str(cmd) | |
p = Popen( | |
cmd, shell=True, cwd=now_dir | |
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir | |
ps.append(p) | |
for p in ps: | |
p.wait() | |
with open(extract_f0_feature_log_path, "r") as f: | |
print(f.read()) | |
#######step3a:训练模型 | |
yield get_info_str(i18n("step3a:正在训练模型")) | |
# 生成filelist | |
if if_f0_3: | |
f0_dir = "%s/2a_f0" % model_log_dir | |
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir | |
names = ( | |
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(feature_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0_dir)]) | |
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)]) | |
) | |
else: | |
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set( | |
[name.split(".")[0] for name in os.listdir(feature_dir)] | |
) | |
opt = [] | |
for name in names: | |
if if_f0_3: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
f0_dir.replace("\\", "\\\\"), | |
name, | |
f0nsf_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
else: | |
opt.append( | |
"%s/%s.wav|%s/%s.npy|%s" | |
% ( | |
gt_wavs_dir.replace("\\", "\\\\"), | |
name, | |
feature_dir.replace("\\", "\\\\"), | |
name, | |
spk_id5, | |
) | |
) | |
fea_dim = 256 if version19 == "v1" else 768 | |
if if_f0_3: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5) | |
) | |
else: | |
for _ in range(2): | |
opt.append( | |
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s" | |
% (now_dir, sr2, now_dir, fea_dim, spk_id5) | |
) | |
shuffle(opt) | |
with open("%s/filelist.txt" % model_log_dir, "w") as f: | |
f.write("\n".join(opt)) | |
yield get_info_str("write filelist done") | |
if gpus16: | |
cmd = ( | |
config.python_cmd | |
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | |
% ( | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
gpus16, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
else: | |
cmd = ( | |
config.python_cmd | |
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s" | |
% ( | |
exp_dir1, | |
sr2, | |
1 if if_f0_3 else 0, | |
batch_size12, | |
total_epoch11, | |
save_epoch10, | |
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "", | |
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "", | |
1 if if_save_latest13 == i18n("是") else 0, | |
1 if if_cache_gpu17 == i18n("是") else 0, | |
1 if if_save_every_weights18 == i18n("是") else 0, | |
version19, | |
) | |
) | |
yield get_info_str(cmd) | |
p = Popen(cmd, shell=True, cwd=now_dir) | |
p.wait() | |
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")) | |
#######step3b:训练索引 | |
npys = [] | |
listdir_res = list(os.listdir(feature_dir)) | |
for name in sorted(listdir_res): | |
phone = np.load("%s/%s" % (feature_dir, name)) | |
npys.append(phone) | |
big_npy = np.concatenate(npys, 0) | |
big_npy_idx = np.arange(big_npy.shape[0]) | |
np.random.shuffle(big_npy_idx) | |
big_npy = big_npy[big_npy_idx] | |
if big_npy.shape[0] > 2e5: | |
# if(1): | |
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0] | |
print(info) | |
yield get_info_str(info) | |
try: | |
big_npy = ( | |
MiniBatchKMeans( | |
n_clusters=10000, | |
verbose=True, | |
batch_size=256 * config.n_cpu, | |
compute_labels=False, | |
init="random", | |
) | |
.fit(big_npy) | |
.cluster_centers_ | |
) | |
except: | |
info = traceback.format_exc() | |
print(info) | |
yield get_info_str(info) | |
np.save("%s/total_fea.npy" % model_log_dir, big_npy) | |
# n_ivf = big_npy.shape[0] // 39 | |
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39) | |
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf)) | |
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf) | |
yield get_info_str("training index") | |
index_ivf = faiss.extract_index_ivf(index) # | |
index_ivf.nprobe = 1 | |
index.train(big_npy) | |
faiss.write_index( | |
index, | |
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
yield get_info_str("adding index") | |
batch_size_add = 8192 | |
for i in range(0, big_npy.shape[0], batch_size_add): | |
index.add(big_npy[i : i + batch_size_add]) | |
faiss.write_index( | |
index, | |
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19), | |
) | |
yield get_info_str( | |
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index" | |
% (n_ivf, index_ivf.nprobe, exp_dir1, version19) | |
) | |
yield get_info_str(i18n("全流程结束!")) | |
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__]) | |
def change_info_(ckpt_path): | |
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")): | |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
try: | |
with open( | |
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r" | |
) as f: | |
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1]) | |
sr, f0 = info["sample_rate"], info["if_f0"] | |
version = "v2" if ("version" in info and info["version"] == "v2") else "v1" | |
return sr, str(f0), version | |
except: | |
traceback.print_exc() | |
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"} | |
def export_onnx(ModelPath, ExportedPath): | |
cpt = torch.load(ModelPath, map_location="cpu") | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768 | |
test_phone = torch.rand(1, 200, vec_channels) # hidden unit | |
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) | |
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) | |
test_pitchf = torch.rand(1, 200) # nsf基频 | |
test_ds = torch.LongTensor([0]) # 说话人ID | |
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) | |
device = "cpu" # 导出时设备(不影响使用模型) | |
net_g = SynthesizerTrnMsNSFsidM( | |
*cpt["config"], is_half=False, version=cpt.get("version", "v1") | |
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) | |
net_g.load_state_dict(cpt["weight"], strict=False) | |
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] | |
output_names = [ | |
"audio", | |
] | |
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出 | |
torch.onnx.export( | |
net_g, | |
( | |
test_phone.to(device), | |
test_phone_lengths.to(device), | |
test_pitch.to(device), | |
test_pitchf.to(device), | |
test_ds.to(device), | |
test_rnd.to(device), | |
), | |
ExportedPath, | |
dynamic_axes={ | |
"phone": [1], | |
"pitch": [1], | |
"pitchf": [1], | |
"rnd": [2], | |
}, | |
do_constant_folding=False, | |
opset_version=13, | |
verbose=False, | |
input_names=input_names, | |
output_names=output_names, | |
) | |
return "Finished" | |
with gr.Blocks() as app: | |
gr.Markdown( | |
value=i18n( | |
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>." | |
) | |
) | |
with gr.Tabs(): | |
with gr.TabItem(i18n("模型推理")): | |
with gr.Row(): | |
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names)) | |
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary") | |
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary") | |
spk_item = gr.Slider( | |
minimum=0, | |
maximum=2333, | |
step=1, | |
label=i18n("请选择说话人id"), | |
value=0, | |
visible=False, | |
interactive=True, | |
) | |
clean_button.click(fn=clean, inputs=[], outputs=[sid0]) | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ") | |
) | |
with gr.Row(): | |
with gr.Column(): | |
vc_transform0 = gr.Number( | |
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
) | |
input_audio0 = gr.Textbox( | |
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"), | |
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav", | |
) | |
f0method0 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" | |
), | |
choices=["pm", "harvest", "crepe"], | |
value="pm", | |
interactive=True, | |
) | |
filter_radius0 = gr.Slider( | |
minimum=0, | |
maximum=7, | |
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | |
value=3, | |
step=1, | |
interactive=True, | |
) | |
with gr.Column(): | |
file_index1 = gr.Textbox( | |
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | |
value="", | |
interactive=True, | |
) | |
file_index2 = gr.Dropdown( | |
label=i18n("自动检测index路径,下拉式选择(dropdown)"), | |
choices=sorted(index_paths), | |
interactive=True, | |
) | |
refresh_button.click( | |
fn=change_choices, inputs=[], outputs=[sid0, file_index2] | |
) | |
# file_big_npy1 = gr.Textbox( | |
# label=i18n("特征文件路径"), | |
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
# interactive=True, | |
# ) | |
index_rate1 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("检索特征占比"), | |
value=0.88, | |
interactive=True, | |
) | |
with gr.Column(): | |
resample_sr0 = gr.Slider( | |
minimum=0, | |
maximum=48000, | |
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | |
value=0, | |
step=1, | |
interactive=True, | |
) | |
rms_mix_rate0 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | |
value=1, | |
interactive=True, | |
) | |
protect0 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label=i18n( | |
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | |
), | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调")) | |
but0 = gr.Button(i18n("转换"), variant="primary") | |
with gr.Row(): | |
vc_output1 = gr.Textbox(label=i18n("输出信息")) | |
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)")) | |
but0.click( | |
vc_single, | |
[ | |
spk_item, | |
input_audio0, | |
vc_transform0, | |
f0_file, | |
f0method0, | |
file_index1, | |
file_index2, | |
# file_big_npy1, | |
index_rate1, | |
filter_radius0, | |
resample_sr0, | |
rms_mix_rate0, | |
protect0, | |
], | |
[vc_output1, vc_output2], | |
) | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ") | |
) | |
with gr.Row(): | |
with gr.Column(): | |
vc_transform1 = gr.Number( | |
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0 | |
) | |
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt") | |
f0method1 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU" | |
), | |
choices=["pm", "harvest", "crepe"], | |
value="pm", | |
interactive=True, | |
) | |
filter_radius1 = gr.Slider( | |
minimum=0, | |
maximum=7, | |
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"), | |
value=3, | |
step=1, | |
interactive=True, | |
) | |
with gr.Column(): | |
file_index3 = gr.Textbox( | |
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"), | |
value="", | |
interactive=True, | |
) | |
file_index4 = gr.Dropdown( | |
label=i18n("自动检测index路径,下拉式选择(dropdown)"), | |
choices=sorted(index_paths), | |
interactive=True, | |
) | |
refresh_button.click( | |
fn=lambda: change_choices()[1], | |
inputs=[], | |
outputs=file_index4, | |
) | |
# file_big_npy2 = gr.Textbox( | |
# label=i18n("特征文件路径"), | |
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy", | |
# interactive=True, | |
# ) | |
index_rate2 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("检索特征占比"), | |
value=1, | |
interactive=True, | |
) | |
with gr.Column(): | |
resample_sr1 = gr.Slider( | |
minimum=0, | |
maximum=48000, | |
label=i18n("后处理重采样至最终采样率,0为不进行重采样"), | |
value=0, | |
step=1, | |
interactive=True, | |
) | |
rms_mix_rate1 = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"), | |
value=1, | |
interactive=True, | |
) | |
protect1 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label=i18n( | |
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果" | |
), | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
with gr.Column(): | |
dir_input = gr.Textbox( | |
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"), | |
value="E:\codes\py39\\test-20230416b\\todo-songs", | |
) | |
inputs = gr.File( | |
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
) | |
with gr.Row(): | |
format1 = gr.Radio( | |
label=i18n("导出文件格式"), | |
choices=["wav", "flac", "mp3", "m4a"], | |
value="flac", | |
interactive=True, | |
) | |
but1 = gr.Button(i18n("转换"), variant="primary") | |
vc_output3 = gr.Textbox(label=i18n("输出信息")) | |
but1.click( | |
vc_multi, | |
[ | |
spk_item, | |
dir_input, | |
opt_input, | |
inputs, | |
vc_transform1, | |
f0method1, | |
file_index3, | |
file_index4, | |
# file_big_npy2, | |
index_rate2, | |
filter_radius1, | |
resample_sr1, | |
rms_mix_rate1, | |
protect1, | |
format1, | |
], | |
[vc_output3], | |
) | |
sid0.change( | |
fn=get_vc, | |
inputs=[sid0, protect0, protect1], | |
outputs=[spk_item, protect0, protect1], | |
) | |
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")): | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n( | |
"人声伴奏分离批量处理, 使用UVR5模型。 <br>" | |
"合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>" | |
"模型分为三类: <br>" | |
"1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>" | |
"2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> " | |
"3、去混响、去延迟模型(by FoxJoy):<br>" | |
" (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>" | |
" (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>" | |
"去混响/去延迟,附:<br>" | |
"1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>" | |
"2、MDX-Net-Dereverb模型挺慢的;<br>" | |
"3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。" | |
) | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dir_wav_input = gr.Textbox( | |
label=i18n("输入待处理音频文件夹路径"), | |
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs", | |
) | |
wav_inputs = gr.File( | |
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹") | |
) | |
with gr.Column(): | |
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names) | |
agg = gr.Slider( | |
minimum=0, | |
maximum=20, | |
step=1, | |
label="人声提取激进程度", | |
value=10, | |
interactive=True, | |
visible=False, # 先不开放调整 | |
) | |
opt_vocal_root = gr.Textbox( | |
label=i18n("指定输出主人声文件夹"), value="opt" | |
) | |
opt_ins_root = gr.Textbox( | |
label=i18n("指定输出非主人声文件夹"), value="opt" | |
) | |
format0 = gr.Radio( | |
label=i18n("导出文件格式"), | |
choices=["wav", "flac", "mp3", "m4a"], | |
value="flac", | |
interactive=True, | |
) | |
but2 = gr.Button(i18n("转换"), variant="primary") | |
vc_output4 = gr.Textbox(label=i18n("输出信息")) | |
but2.click( | |
uvr, | |
[ | |
model_choose, | |
dir_wav_input, | |
opt_vocal_root, | |
wav_inputs, | |
opt_ins_root, | |
agg, | |
format0, | |
], | |
[vc_output4], | |
) | |
with gr.TabItem(i18n("训练")): | |
gr.Markdown( | |
value=i18n( | |
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. " | |
) | |
) | |
with gr.Row(): | |
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test") | |
sr2 = gr.Radio( | |
label=i18n("目标采样率"), | |
choices=["40k", "48k"], | |
value="40k", | |
interactive=True, | |
) | |
if_f0_3 = gr.Radio( | |
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"), | |
choices=[True, False], | |
value=True, | |
interactive=True, | |
) | |
version19 = gr.Radio( | |
label=i18n("版本"), | |
choices=["v1", "v2"], | |
value="v1", | |
interactive=True, | |
visible=True, | |
) | |
np7 = gr.Slider( | |
minimum=0, | |
maximum=config.n_cpu, | |
step=1, | |
label=i18n("提取音高和处理数据使用的CPU进程数"), | |
value=int(np.ceil(config.n_cpu / 1.5)), | |
interactive=True, | |
) | |
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理 | |
gr.Markdown( | |
value=i18n( | |
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. " | |
) | |
) | |
with gr.Row(): | |
trainset_dir4 = gr.Textbox( | |
label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src" | |
) | |
spk_id5 = gr.Slider( | |
minimum=0, | |
maximum=4, | |
step=1, | |
label=i18n("请指定说话人id"), | |
value=0, | |
interactive=True, | |
) | |
but1 = gr.Button(i18n("处理数据"), variant="primary") | |
info1 = gr.Textbox(label=i18n("输出信息"), value="") | |
but1.click( | |
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1] | |
) | |
with gr.Group(): | |
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")) | |
with gr.Row(): | |
with gr.Column(): | |
gpus6 = gr.Textbox( | |
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
value=gpus, | |
interactive=True, | |
) | |
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info) | |
with gr.Column(): | |
f0method8 = gr.Radio( | |
label=i18n( | |
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢" | |
), | |
choices=["pm", "harvest", "dio"], | |
value="harvest", | |
interactive=True, | |
) | |
but2 = gr.Button(i18n("特征提取"), variant="primary") | |
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
but2.click( | |
extract_f0_feature, | |
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19], | |
[info2], | |
) | |
with gr.Group(): | |
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引")) | |
with gr.Row(): | |
save_epoch10 = gr.Slider( | |
minimum=0, | |
maximum=50, | |
step=1, | |
label=i18n("保存频率save_every_epoch"), | |
value=5, | |
interactive=True, | |
) | |
total_epoch11 = gr.Slider( | |
minimum=0, | |
maximum=1000, | |
step=1, | |
label=i18n("总训练轮数total_epoch"), | |
value=20, | |
interactive=True, | |
) | |
batch_size12 = gr.Slider( | |
minimum=1, | |
maximum=40, | |
step=1, | |
label=i18n("每张显卡的batch_size"), | |
value=default_batch_size, | |
interactive=True, | |
) | |
if_save_latest13 = gr.Radio( | |
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("否"), | |
interactive=True, | |
) | |
if_cache_gpu17 = gr.Radio( | |
label=i18n( | |
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速" | |
), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("否"), | |
interactive=True, | |
) | |
if_save_every_weights18 = gr.Radio( | |
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("否"), | |
interactive=True, | |
) | |
with gr.Row(): | |
pretrained_G14 = gr.Textbox( | |
label=i18n("加载预训练底模G路径"), | |
value="pretrained/f0G40k.pth", | |
interactive=True, | |
) | |
pretrained_D15 = gr.Textbox( | |
label=i18n("加载预训练底模D路径"), | |
value="pretrained/f0D40k.pth", | |
interactive=True, | |
) | |
sr2.change( | |
change_sr2, | |
[sr2, if_f0_3, version19], | |
[pretrained_G14, pretrained_D15], | |
) | |
version19.change( | |
change_version19, | |
[sr2, if_f0_3, version19], | |
[pretrained_G14, pretrained_D15, sr2], | |
) | |
if_f0_3.change( | |
change_f0, | |
[if_f0_3, sr2, version19], | |
[f0method8, pretrained_G14, pretrained_D15], | |
) | |
gpus16 = gr.Textbox( | |
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"), | |
value=gpus, | |
interactive=True, | |
) | |
but3 = gr.Button(i18n("训练模型"), variant="primary") | |
but4 = gr.Button(i18n("训练特征索引"), variant="primary") | |
but5 = gr.Button(i18n("一键训练"), variant="primary") | |
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10) | |
but3.click( | |
click_train, | |
[ | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
spk_id5, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
], | |
info3, | |
) | |
but4.click(train_index, [exp_dir1, version19], info3) | |
but5.click( | |
train1key, | |
[ | |
exp_dir1, | |
sr2, | |
if_f0_3, | |
trainset_dir4, | |
spk_id5, | |
np7, | |
f0method8, | |
save_epoch10, | |
total_epoch11, | |
batch_size12, | |
if_save_latest13, | |
pretrained_G14, | |
pretrained_D15, | |
gpus16, | |
if_cache_gpu17, | |
if_save_every_weights18, | |
version19, | |
], | |
info3, | |
) | |
with gr.TabItem(i18n("ckpt处理")): | |
with gr.Group(): | |
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合")) | |
with gr.Row(): | |
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True) | |
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True) | |
alpha_a = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label=i18n("A模型权重"), | |
value=0.5, | |
interactive=True, | |
) | |
with gr.Row(): | |
sr_ = gr.Radio( | |
label=i18n("目标采样率"), | |
choices=["40k", "48k"], | |
value="40k", | |
interactive=True, | |
) | |
if_f0_ = gr.Radio( | |
label=i18n("模型是否带音高指导"), | |
choices=[i18n("是"), i18n("否")], | |
value=i18n("是"), | |
interactive=True, | |
) | |
info__ = gr.Textbox( | |
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | |
) | |
name_to_save0 = gr.Textbox( | |
label=i18n("保存的模型名不带后缀"), | |
value="", | |
max_lines=1, | |
interactive=True, | |
) | |
version_2 = gr.Radio( | |
label=i18n("模型版本型号"), | |
choices=["v1", "v2"], | |
value="v1", | |
interactive=True, | |
) | |
with gr.Row(): | |
but6 = gr.Button(i18n("融合"), variant="primary") | |
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
but6.click( | |
merge, | |
[ | |
ckpt_a, | |
ckpt_b, | |
alpha_a, | |
sr_, | |
if_f0_, | |
info__, | |
name_to_save0, | |
version_2, | |
], | |
info4, | |
) # def merge(path1,path2,alpha1,sr,f0,info): | |
with gr.Group(): | |
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)")) | |
with gr.Row(): | |
ckpt_path0 = gr.Textbox( | |
label=i18n("模型路径"), value="", interactive=True | |
) | |
info_ = gr.Textbox( | |
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True | |
) | |
name_to_save1 = gr.Textbox( | |
label=i18n("保存的文件名, 默认空为和源文件同名"), | |
value="", | |
max_lines=8, | |
interactive=True, | |
) | |
with gr.Row(): | |
but7 = gr.Button(i18n("修改"), variant="primary") | |
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5) | |
with gr.Group(): | |
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)")) | |
with gr.Row(): | |
ckpt_path1 = gr.Textbox( | |
label=i18n("模型路径"), value="", interactive=True | |
) | |
but8 = gr.Button(i18n("查看"), variant="primary") | |
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
but8.click(show_info, [ckpt_path1], info6) | |
with gr.Group(): | |
gr.Markdown( | |
value=i18n( | |
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况" | |
) | |
) | |
with gr.Row(): | |
ckpt_path2 = gr.Textbox( | |
label=i18n("模型路径"), | |
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth", | |
interactive=True, | |
) | |
save_name = gr.Textbox( | |
label=i18n("保存名"), value="", interactive=True | |
) | |
sr__ = gr.Radio( | |
label=i18n("目标采样率"), | |
choices=["32k", "40k", "48k"], | |
value="40k", | |
interactive=True, | |
) | |
if_f0__ = gr.Radio( | |
label=i18n("模型是否带音高指导,1是0否"), | |
choices=["1", "0"], | |
value="1", | |
interactive=True, | |
) | |
version_1 = gr.Radio( | |
label=i18n("模型版本型号"), | |
choices=["v1", "v2"], | |
value="v2", | |
interactive=True, | |
) | |
info___ = gr.Textbox( | |
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True | |
) | |
but9 = gr.Button(i18n("提取"), variant="primary") | |
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8) | |
ckpt_path2.change( | |
change_info_, [ckpt_path2], [sr__, if_f0__, version_1] | |
) | |
but9.click( | |
extract_small_model, | |
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1], | |
info7, | |
) | |
with gr.TabItem(i18n("Onnx导出")): | |
with gr.Row(): | |
ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True) | |
with gr.Row(): | |
onnx_dir = gr.Textbox( | |
label=i18n("Onnx输出路径"), value="", interactive=True | |
) | |
with gr.Row(): | |
infoOnnx = gr.Label(label="info") | |
with gr.Row(): | |
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary") | |
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir], infoOnnx) | |
tab_faq = i18n("常见问题解答") | |
with gr.TabItem(tab_faq): | |
try: | |
if tab_faq == "常见问题解答": | |
with open("docs/faq.md", "r", encoding="utf8") as f: | |
info = f.read() | |
else: | |
with open("docs/faq_en.md", "r", encoding="utf8") as f: | |
info = f.read() | |
gr.Markdown(value=info) | |
except: | |
gr.Markdown(traceback.format_exc()) | |
# with gr.TabItem(i18n("招募音高曲线前端编辑器")): | |
# gr.Markdown(value=i18n("加开发群联系我xxxxx")) | |
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")): | |
# gr.Markdown(value=i18n("xxxxx")) | |
if config.iscolab: | |
app.queue(concurrency_count=511, max_size=1022).launch(share=True) | |
else: | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=not config.noautoopen, | |
server_port=config.listen_port, | |
quiet=True, | |
) | |