Spaces:
Runtime error
Runtime error
File size: 14,822 Bytes
5704551 8abc49f e5c3d38 8abc49f 5704551 3774d93 5704551 5f69a3a 5704551 e5c3d38 5704551 e5c3d38 5704551 77dfa73 5704551 bb89ebf 3c14aef 5704551 77dfa73 5704551 d7df95d 5704551 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
import io
import base64
import os
import numpy as np
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline
from PIL import Image
from PIL import ImageOps
import gradio as gr
import base64
import skimage
import skimage.measure
from utils import *
try:
cuda_available = torch.cuda.is_available()
except:
cuda_available = False
finally:
if cuda_available:
device = "cuda"
else:
device = "cpu"
if device != "cuda":
import contextlib
autocast = contextlib.nullcontext
def load_html():
body, canvaspy = "", ""
with open("index.html", encoding="utf8") as f:
body = f.read()
with open("canvas.py", encoding="utf8") as f:
canvaspy = f.read()
body = body.replace("- paths:\n", "")
body = body.replace(" - ./canvas.py\n", "")
body = body.replace("from canvas import InfCanvas", canvaspy)
return body
def test(x):
x = load_html()
return f"""<iframe id="sdinfframe" style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
DEBUG_MODE = False
try:
SAMPLING_MODE = Image.Resampling.LANCZOS
except Exception as e:
SAMPLING_MODE = Image.LANCZOS
try:
contain_func = ImageOps.contain
except Exception as e:
def contain_func(image, size, method=SAMPLING_MODE):
# from PIL: https://pillow.readthedocs.io/en/stable/reference/ImageOps.html#PIL.ImageOps.contain
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio > dest_ratio:
new_height = int(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = int(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
PAINT_SELECTION = "✥"
IMAGE_SELECTION = "🖼️"
BRUSH_SELECTION = "🖌️"
blocks = gr.Blocks()
model = {}
model["width"] = 1500
model["height"] = 600
model["sel_size"] = 256
def get_token():
token = ""
token = os.environ.get("hftoken", token)
return token
def save_token(token):
return
def get_model(token=""):
if "text2img" not in model:
if device=="cuda":
text2img = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
revision="fp16",
torch_dtype=torch.float16,
use_auth_token=token,
).to(device)
else:
text2img = StableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
use_auth_token=token,
).to(device)
model["safety_checker"] = text2img.safety_checker
inpaint = StableDiffusionInpaintPipeline(
vae=text2img.vae,
text_encoder=text2img.text_encoder,
tokenizer=text2img.tokenizer,
unet=text2img.unet,
scheduler=text2img.scheduler,
safety_checker=text2img.safety_checker,
feature_extractor=text2img.feature_extractor,
).to(device)
save_token(token)
try:
total_memory = torch.cuda.get_device_properties(0).total_memory // (
1024 ** 3
)
if total_memory <= 5:
inpaint.enable_attention_slicing()
except:
pass
model["text2img"] = text2img
model["inpaint"] = inpaint
return model["text2img"], model["inpaint"]
def run_outpaint(
sel_buffer_str,
prompt_text,
strength,
guidance,
step,
resize_check,
fill_mode,
enable_safety,
state,
):
base64_str = "base64"
if not cuda_available:
data = base64.b64decode(str(sel_buffer_str))
pil = Image.open(io.BytesIO(data))
sel_buffer = np.array(pil)
sel_buffer[:, :, 3]=255
sel_buffer[:, :, 0]=255
out_pil = Image.fromarray(sel_buffer)
out_buffer = io.BytesIO()
out_pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
return (
gr.update(label=str(state + 1), value=base64_str,),
gr.update(label="Prompt"),
state + 1,
)
if True:
text2img, inpaint = get_model()
if enable_safety:
text2img.safety_checker = model["safety_checker"]
inpaint.safety_checker = model["safety_checker"]
else:
text2img.safety_checker = lambda images, **kwargs: (images, False)
inpaint.safety_checker = lambda images, **kwargs: (images, False)
data = base64.b64decode(str(sel_buffer_str))
pil = Image.open(io.BytesIO(data))
# base.output.clear_output()
# base.read_selection_from_buffer()
sel_buffer = np.array(pil)
img = sel_buffer[:, :, 0:3]
mask = sel_buffer[:, :, -1]
process_size = 512 if resize_check else model["sel_size"]
if mask.sum() > 0:
img, mask = functbl[fill_mode](img, mask)
init_image = Image.fromarray(img)
mask = 255 - mask
mask = skimage.measure.block_reduce(mask, (8, 8), np.max)
mask = mask.repeat(8, axis=0).repeat(8, axis=1)
mask_image = Image.fromarray(mask)
# mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 8))
with autocast("cuda"):
images = inpaint(
prompt=prompt_text,
init_image=init_image.resize(
(process_size, process_size), resample=SAMPLING_MODE
),
mask_image=mask_image.resize((process_size, process_size)),
strength=strength,
num_inference_steps=step,
guidance_scale=guidance,
)["sample"]
else:
with autocast("cuda"):
images = text2img(
prompt=prompt_text, height=process_size, width=process_size,
)["sample"]
out = sel_buffer.copy()
out[:, :, 0:3] = np.array(
images[0].resize(
(model["sel_size"], model["sel_size"]), resample=SAMPLING_MODE,
)
)
out[:, :, -1] = 255
out_pil = Image.fromarray(out)
out_buffer = io.BytesIO()
out_pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
return (
gr.update(label=str(state + 1), value=base64_str,),
gr.update(label="Prompt"),
state + 1,
)
def load_js(name):
if name in ["export", "commit", "undo"]:
return f"""
function (x)
{{
let frame=document.querySelector("gradio-app").querySelector("#sdinfframe").contentWindow;
frame.postMessage(["click","{name}"], "*");
return x;
}}
"""
ret = ""
with open(f"./js/{name}.js", "r") as f:
ret = f.read()
return ret
upload_button_js = load_js("upload")
outpaint_button_js = load_js("outpaint")
proceed_button_js = load_js("proceed")
mode_js = load_js("mode")
setup_button_js = load_js("setup")
if not cuda_available:
get_model = lambda x:x
get_model(get_token())
with blocks as demo:
# title
title = gr.Markdown(
"""
**stablediffusion-infinity**: Outpainting with Stable Diffusion on an infinite canvas: [https://github.com/lkwq007/stablediffusion-infinity](https://github.com/lkwq007/stablediffusion-infinity)
"""
)
# frame
frame = gr.HTML(test(2), visible=True)
# setup
# with gr.Row():
# token = gr.Textbox(
# label="Huggingface token",
# value="",
# placeholder="Input your token here",
# )
# canvas_width = gr.Number(
# label="Canvas width", value=1024, precision=0, elem_id="canvas_width"
# )
# canvas_height = gr.Number(
# label="Canvas height", value=600, precision=0, elem_id="canvas_height"
# )
# selection_size = gr.Number(
# label="Selection box size", value=256, precision=0, elem_id="selection_size"
# )
# setup_button = gr.Button("Start (may take a while)", variant="primary")
with gr.Row():
with gr.Column(scale=3, min_width=270):
# canvas control
canvas_control = gr.Radio(
label="Control",
choices=[PAINT_SELECTION, IMAGE_SELECTION, BRUSH_SELECTION],
value=PAINT_SELECTION,
elem_id="control",
)
with gr.Box():
with gr.Group():
run_button = gr.Button(value="Outpaint")
export_button = gr.Button(value="Export")
commit_button = gr.Button(value="✓")
retry_button = gr.Button(value="⟳")
undo_button = gr.Button(value="↶")
with gr.Column(scale=3, min_width=270):
sd_prompt = gr.Textbox(
label="Prompt", placeholder="input your prompt here", lines=4
)
with gr.Column(scale=2, min_width=150):
with gr.Box():
sd_resize = gr.Checkbox(label="Resize input to 515x512", value=True)
safety_check = gr.Checkbox(label="Enable Safety Checker", value=True)
sd_strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.75, step=0.01
)
with gr.Column(scale=1, min_width=150):
sd_step = gr.Number(label="Step", value=50, precision=0)
sd_guidance = gr.Number(label="Guidance", value=7.5)
with gr.Row():
with gr.Column(scale=4, min_width=600):
init_mode = gr.Radio(
label="Init mode",
choices=[
"patchmatch",
"edge_pad",
"cv2_ns",
"cv2_telea",
"gaussian",
"perlin",
],
value="patchmatch",
type="value",
)
proceed_button = gr.Button("Proceed", elem_id="proceed", visible=DEBUG_MODE)
# sd pipeline parameters
with gr.Accordion("Upload image", open=False):
image_box = gr.Image(image_mode="RGBA", source="upload", type="pil")
upload_button = gr.Button(
"Upload"
)
model_output = gr.Textbox(visible=DEBUG_MODE, elem_id="output", label="0")
model_input = gr.Textbox(visible=DEBUG_MODE, elem_id="input", label="Input")
upload_output = gr.Textbox(visible=DEBUG_MODE, elem_id="upload", label="0")
model_output_state = gr.State(value=0)
upload_output_state = gr.State(value=0)
# canvas_state = gr.State({"width":1024,"height":600,"selection_size":384})
def upload_func(image, state):
pil = image.convert("RGBA")
w, h = pil.size
if w > model["width"] - 100 or h > model["height"] - 100:
pil = contain_func(pil, (model["width"] - 100, model["height"] - 100))
out_buffer = io.BytesIO()
pil.save(out_buffer, format="PNG")
out_buffer.seek(0)
base64_bytes = base64.b64encode(out_buffer.read())
base64_str = base64_bytes.decode("ascii")
return (
gr.update(label=str(state + 1), value=base64_str),
state + 1,
)
upload_button.click(
fn=upload_func,
inputs=[image_box, upload_output_state],
outputs=[upload_output, upload_output_state],
_js=upload_button_js,
queue=False
)
def setup_func(token_val, width, height, size):
model["width"] = width
model["height"] = height
model["sel_size"] = size
try:
get_model(token_val)
except Exception as e:
return {token: gr.update(value="Invalid token!")}
return {
token: gr.update(visible=False),
canvas_width: gr.update(visible=False),
canvas_height: gr.update(visible=False),
selection_size: gr.update(visible=False),
setup_button: gr.update(visible=False),
frame: gr.update(visible=True),
upload_button: gr.update(value="Upload"),
}
# setup_button.click(
# fn=setup_func,
# inputs=[token, canvas_width, canvas_height, selection_size],
# outputs=[
# token,
# canvas_width,
# canvas_height,
# selection_size,
# setup_button,
# frame,
# upload_button,
# ],
# _js=setup_button_js,
# )
run_button.click(
fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js,
)
retry_button.click(
fn=None, inputs=[run_button], outputs=[run_button], _js=outpaint_button_js,
)
proceed_button.click(
fn=run_outpaint,
inputs=[
model_input,
sd_prompt,
sd_strength,
sd_guidance,
sd_step,
sd_resize,
init_mode,
safety_check,
model_output_state,
],
outputs=[model_output, sd_prompt, model_output_state],
_js=proceed_button_js,
)
export_button.click(
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("export")
)
commit_button.click(
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("commit")
)
undo_button.click(
fn=None, inputs=[export_button], outputs=[export_button], _js=load_js("undo")
)
canvas_control.change(
fn=None, inputs=[canvas_control], outputs=[canvas_control], _js=mode_js,
)
demo.launch()
|