import gradio as gr import torch from torch import Tensor, nn from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer) import spaces import numpy as np import io import base64 class HFEmbedder(nn.Module): def __init__(self, version: str, max_length: int, **hf_kwargs): super().__init__() self.is_clip = version.startswith("openai") self.max_length = max_length self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" if self.is_clip: self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) else: self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) self.hf_module = self.hf_module.eval().requires_grad_(False) def forward(self, text: list[str]) -> Tensor: batch_encoding = self.tokenizer( text, truncation=True, max_length=self.max_length, return_length=False, return_overflowing_tokens=False, padding="max_length", return_tensors="pt", ) outputs = self.hf_module( input_ids=batch_encoding["input_ids"].to(self.hf_module.device), attention_mask=None, output_hidden_states=False, ) return outputs[self.output_key] def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder: # max length 64, 128, 256 and 512 should work (if your sequence is short enough) return HFEmbedder("lnyan/t5-v1_1-xxl-encoder", max_length=max_length, torch_dtype=torch.bfloat16).to("cuda") def load_clip(device: str | torch.device = "cuda") -> HFEmbedder: return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to("cuda") # @spaces.GPU(duration=20) def load_encoders(): is_schnell = True t5 = load_t5("cuda", max_length=256 if is_schnell else 512) clip = load_clip("cuda") return t5, clip import numpy as np def b64(txt,vec): buffer = io.BytesIO() torch.save((txt,vec), buffer) buffer.seek(0) encoded = base64.b64encode(buffer.getvalue()).decode('utf-8') return encoded t5,clip=load_encoders() @spaces.GPU(duration=10) def convert(prompt): if isinstance(prompt, str): prompt = [prompt] txt = t5(prompt) vec = clip(prompt) return b64(txt,vec) with gr.Blocks() as demo: gr.Markdown("""A workaround for flux-flax to fit into 40G VRAM""") with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="prompt") convert_btn = gr.Button(value="Convert") with gr.Column(): output = gr.Textbox(label="output") convert_btn.click(convert, inputs=prompt, outputs=output, api_name="convert") demo.launch()