import json import uuid from typing import Optional import requests from huggingface_hub import Discussion, HfApi, get_repo_discussions from .utils import cached_file, logging logger = logging.get_logger(__name__) def previous_pr(api: HfApi, model_id: str, pr_title: str, token: str) -> Optional["Discussion"]: main_commit = api.list_repo_commits(model_id, token=token)[0].commit_id for discussion in get_repo_discussions(repo_id=model_id, token=token): if discussion.title == pr_title and discussion.status == "open" and discussion.is_pull_request: commits = api.list_repo_commits(model_id, revision=discussion.git_reference, token=token) if main_commit == commits[1].commit_id: return discussion return None def spawn_conversion(token: str, private: bool, model_id: str): logger.info("Attempting to convert .bin model on the fly to safetensors.") safetensors_convert_space_url = "https://safetensors-convert.hf.space" sse_url = f"{safetensors_convert_space_url}/queue/join" sse_data_url = f"{safetensors_convert_space_url}/queue/data" # The `fn_index` is necessary to indicate to gradio that we will use the `run` method of the Space. hash_data = {"fn_index": 1, "session_hash": str(uuid.uuid4())} def start(_sse_connection, payload): for line in _sse_connection.iter_lines(): line = line.decode() if line.startswith("data:"): resp = json.loads(line[5:]) logger.debug(f"Safetensors conversion status: {resp['msg']}") if resp["msg"] == "queue_full": raise ValueError("Queue is full! Please try again.") elif resp["msg"] == "send_data": event_id = resp["event_id"] response = requests.post( sse_data_url, stream=True, params=hash_data, json={"event_id": event_id, **payload, **hash_data}, ) response.raise_for_status() elif resp["msg"] == "process_completed": return with requests.get(sse_url, stream=True, params=hash_data) as sse_connection: data = {"data": [model_id, private, token]} try: logger.debug("Spawning safetensors automatic conversion.") start(sse_connection, data) except Exception as e: logger.warning(f"Error during conversion: {repr(e)}") def get_conversion_pr_reference(api: HfApi, model_id: str, **kwargs): private = api.model_info(model_id).private logger.info("Attempting to create safetensors variant") pr_title = "Adding `safetensors` variant of this model" token = kwargs.get("token") # This looks into the current repo's open PRs to see if a PR for safetensors was already open. If so, it # returns it. It checks that the PR was opened by the bot and not by another user so as to prevent # security breaches. pr = previous_pr(api, model_id, pr_title, token=token) if pr is None or (not private and pr.author != "SFConvertBot"): spawn_conversion(token, private, model_id) pr = previous_pr(api, model_id, pr_title, token=token) else: logger.info("Safetensors PR exists") sha = f"refs/pr/{pr.num}" return sha def auto_conversion(pretrained_model_name_or_path: str, **cached_file_kwargs): api = HfApi(token=cached_file_kwargs.get("token")) sha = get_conversion_pr_reference(api, pretrained_model_name_or_path, **cached_file_kwargs) if sha is None: return None, None cached_file_kwargs["revision"] = sha del cached_file_kwargs["_commit_hash"] # This is an additional HEAD call that could be removed if we could infer sharded/non-sharded from the PR # description. sharded = api.file_exists( pretrained_model_name_or_path, "model.safetensors.index.json", revision=sha, token=cached_file_kwargs.get("token"), ) filename = "model.safetensors.index.json" if sharded else "model.safetensors" resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs) return resolved_archive_file, sha, sharded