File size: 24,392 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Codes are borrowed from
# https://github.com/ZHKKKe/MODNet/blob/master/src/trainer.py
# https://github.com/ZHKKKe/MODNet/blob/master/src/models/backbones/mobilenetv2.py
# https://github.com/ZHKKKe/MODNet/blob/master/src/models/modnet.py

import numpy as np
import scipy
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import math
import torch
from scipy.ndimage import gaussian_filter


# ----------------------------------------------------------------------------------
# Loss Functions
# ----------------------------------------------------------------------------------


class GaussianBlurLayer(nn.Module):
    """ Add Gaussian Blur to a 4D tensors
    This layer takes a 4D tensor of {N, C, H, W} as input.
    The Gaussian blur will be performed in given channel number (C) splitly.
    """

    def __init__(self, channels, kernel_size):
        """
        Arguments:
            channels (int): Channel for input tensor
            kernel_size (int): Size of the kernel used in blurring
        """

        super(GaussianBlurLayer, self).__init__()
        self.channels = channels
        self.kernel_size = kernel_size
        assert self.kernel_size % 2 != 0

        self.op = nn.Sequential(
            nn.ReflectionPad2d(math.floor(self.kernel_size / 2)),
            nn.Conv2d(channels, channels, self.kernel_size,
                      stride=1, padding=0, bias=None, groups=channels)
        )

        self._init_kernel()

    def forward(self, x):
        """
        Arguments:
            x (torch.Tensor): input 4D tensor
        Returns:
            torch.Tensor: Blurred version of the input
        """

        if not len(list(x.shape)) == 4:
            print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
            exit()
        elif not x.shape[1] == self.channels:
            print('In \'GaussianBlurLayer\', the required channel ({0}) is'
                  'not the same as input ({1})\n'.format(self.channels, x.shape[1]))
            exit()

        return self.op(x)

    def _init_kernel(self):
        sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8

        n = np.zeros((self.kernel_size, self.kernel_size))
        i = math.floor(self.kernel_size / 2)
        n[i, i] = 1
        kernel = gaussian_filter(n, sigma)

        for name, param in self.named_parameters():
            param.data.copy_(torch.from_numpy(kernel))
            param.requires_grad = False


blurer = GaussianBlurLayer(1, 3)


def loss_func(pred_semantic, pred_detail, pred_matte, image, trimap, gt_matte,
              semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0):
    """ loss of MODNet
    Arguments:
        blurer: GaussianBlurLayer
        pred_semantic: model output
        pred_detail: model output
        pred_matte: model output
        image : input RGB image ts pixel values should be normalized
        trimap : trimap used to calculate the losses
                its pixel values can be 0, 0.5, or 1
                (foreground=1, background=0, unknown=0.5)
        gt_matte: ground truth alpha matte its pixel values are between [0, 1]
        semantic_scale (float): scale of the semantic loss
                                NOTE: please adjust according to your dataset
        detail_scale (float): scale of the detail loss
                              NOTE: please adjust according to your dataset
        matte_scale (float): scale of the matte loss
                             NOTE: please adjust according to your dataset

    Returns:
        semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch]
        detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch]
        matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch]
    """

    trimap = trimap.float()
    # calculate the boundary mask from the trimap
    boundaries = (trimap < 0.5) + (trimap > 0.5)

    # calculate the semantic loss
    gt_semantic = F.interpolate(gt_matte, scale_factor=1 / 16, mode='bilinear')
    gt_semantic = blurer(gt_semantic)
    semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic))
    semantic_loss = semantic_scale * semantic_loss

    # calculate the detail loss
    pred_boundary_detail = torch.where(boundaries, trimap, pred_detail.float())
    gt_detail = torch.where(boundaries, trimap, gt_matte.float())
    detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail.float()))
    detail_loss = detail_scale * detail_loss

    # calculate the matte loss
    pred_boundary_matte = torch.where(boundaries, trimap, pred_matte.float())
    matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte)
    matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \
                               + 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte)
    matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss)
    matte_loss = matte_scale * matte_loss

    return semantic_loss, detail_loss, matte_loss


# ------------------------------------------------------------------------------
#  Useful functions
# ------------------------------------------------------------------------------

def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU6(inplace=True)
    )


def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU6(inplace=True)
    )


# ------------------------------------------------------------------------------
#  Class of Inverted Residual block
# ------------------------------------------------------------------------------

class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expansion, dilation=1):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = round(inp * expansion)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expansion == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.ReLU6(inplace=True),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


# ------------------------------------------------------------------------------
#  Class of MobileNetV2
# ------------------------------------------------------------------------------

class MobileNetV2(nn.Module):
    def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
        super(MobileNetV2, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        input_channel = 32
        last_channel = 1280
        interverted_residual_setting = [
            # t, c, n, s
            [1, 16, 1, 1],
            [expansion, 24, 2, 2],
            [expansion, 32, 3, 2],
            [expansion, 64, 4, 2],
            [expansion, 96, 3, 1],
            [expansion, 160, 3, 2],
            [expansion, 320, 1, 1],
        ]

        # building first layer
        input_channel = _make_divisible(input_channel * alpha, 8)
        self.last_channel = _make_divisible(last_channel * alpha, 8) if alpha > 1.0 else last_channel
        self.features = [conv_bn(self.in_channels, input_channel, 2)]

        # building inverted residual blocks
        for t, c, n, s in interverted_residual_setting:
            output_channel = _make_divisible(int(c * alpha), 8)
            for i in range(n):
                if i == 0:
                    self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
                else:
                    self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
                input_channel = output_channel

        # building last several layers
        self.features.append(conv_1x1_bn(input_channel, self.last_channel))

        # make it nn.Sequential
        self.features = nn.Sequential(*self.features)

        # building classifier
        if self.num_classes is not None:
            self.classifier = nn.Sequential(
                nn.Dropout(0.2),
                nn.Linear(self.last_channel, num_classes),
            )

        # Initialize weights
        self._init_weights()

    def forward(self, x):
        # Stage1
        x = self.features[0](x)
        x = self.features[1](x)
        # Stage2
        x = self.features[2](x)
        x = self.features[3](x)
        # Stage3
        x = self.features[4](x)
        x = self.features[5](x)
        x = self.features[6](x)
        # Stage4
        x = self.features[7](x)
        x = self.features[8](x)
        x = self.features[9](x)
        x = self.features[10](x)
        x = self.features[11](x)
        x = self.features[12](x)
        x = self.features[13](x)
        # Stage5
        x = self.features[14](x)
        x = self.features[15](x)
        x = self.features[16](x)
        x = self.features[17](x)
        x = self.features[18](x)

        # Classification
        if self.num_classes is not None:
            x = x.mean(dim=(2, 3))
            x = self.classifier(x)

        # Output
        return x

    def _load_pretrained_model(self, pretrained_file):
        pretrain_dict = torch.load(pretrained_file, map_location='cpu')
        model_dict = {}
        state_dict = self.state_dict()
        print("[MobileNetV2] Loading pretrained model...")
        for k, v in pretrain_dict.items():
            if k in state_dict:
                model_dict[k] = v
            else:
                print(k, "is ignored")
        state_dict.update(model_dict)
        self.load_state_dict(state_dict)

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


class BaseBackbone(nn.Module):
    """ Superclass of Replaceable Backbone Model for Semantic Estimation
    """

    def __init__(self, in_channels):
        super(BaseBackbone, self).__init__()
        self.in_channels = in_channels

        self.model = None
        self.enc_channels = []

    def forward(self, x):
        raise NotImplementedError

    def load_pretrained_ckpt(self):
        raise NotImplementedError


class MobileNetV2Backbone(BaseBackbone):
    """ MobileNetV2 Backbone
    """

    def __init__(self, in_channels):
        super(MobileNetV2Backbone, self).__init__(in_channels)

        self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
        self.enc_channels = [16, 24, 32, 96, 1280]

    def forward(self, x):
        # x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
        x = self.model.features[0](x)
        x = self.model.features[1](x)
        enc2x = x

        # x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
        x = self.model.features[2](x)
        x = self.model.features[3](x)
        enc4x = x

        # x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
        x = self.model.features[4](x)
        x = self.model.features[5](x)
        x = self.model.features[6](x)
        enc8x = x

        # x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
        x = self.model.features[7](x)
        x = self.model.features[8](x)
        x = self.model.features[9](x)
        x = self.model.features[10](x)
        x = self.model.features[11](x)
        x = self.model.features[12](x)
        x = self.model.features[13](x)
        enc16x = x

        # x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
        x = self.model.features[14](x)
        x = self.model.features[15](x)
        x = self.model.features[16](x)
        x = self.model.features[17](x)
        x = self.model.features[18](x)
        enc32x = x
        return [enc2x, enc4x, enc8x, enc16x, enc32x]

    def load_pretrained_ckpt(self):
        # the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
        ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
        if not os.path.exists(ckpt_path):
            print('cannot find the pretrained mobilenetv2 backbone')
            exit()

        ckpt = torch.load(ckpt_path)
        self.model.load_state_dict(ckpt)


SUPPORTED_BACKBONES = {
    'mobilenetv2': MobileNetV2Backbone,
}


# ------------------------------------------------------------------------------
#  MODNet Basic Modules
# ------------------------------------------------------------------------------

class IBNorm(nn.Module):
    """ Combine Instance Norm and Batch Norm into One Layer
    """

    def __init__(self, in_channels):
        super(IBNorm, self).__init__()
        in_channels = in_channels
        self.bnorm_channels = int(in_channels / 2)
        self.inorm_channels = in_channels - self.bnorm_channels

        self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
        self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)

    def forward(self, x):
        bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
        in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())

        return torch.cat((bn_x, in_x), 1)


class Conv2dIBNormRelu(nn.Module):
    """ Convolution + IBNorm + ReLu
    """

    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, dilation=1, groups=1, bias=True,
                 with_ibn=True, with_relu=True):
        super(Conv2dIBNormRelu, self).__init__()

        layers = [
            nn.Conv2d(in_channels, out_channels, kernel_size,
                      stride=stride, padding=padding, dilation=dilation,
                      groups=groups, bias=bias)
        ]

        if with_ibn:
            layers.append(IBNorm(out_channels))
        if with_relu:
            layers.append(nn.ReLU(inplace=True))

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)


class SEBlock(nn.Module):
    """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
    """

    def __init__(self, in_channels, out_channels, reduction=1):
        super(SEBlock, self).__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, int(in_channels // reduction), bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels // reduction), out_channels, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        w = self.pool(x).view(b, c)
        w = self.fc(w).view(b, c, 1, 1)

        return x * w.expand_as(x)


# ------------------------------------------------------------------------------
#  MODNet Branches
# ------------------------------------------------------------------------------

class LRBranch(nn.Module):
    """ Low Resolution Branch of MODNet
    """

    def __init__(self, backbone):
        super(LRBranch, self).__init__()

        enc_channels = backbone.enc_channels

        self.backbone = backbone
        self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
        self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
        self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
        self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False,
                                        with_relu=False)

    def forward(self, img, inference):
        enc_features = self.backbone.forward(img)
        enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]

        enc32x = self.se_block(enc32x)
        lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
        lr16x = self.conv_lr16x(lr16x)
        lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
        lr8x = self.conv_lr8x(lr8x)

        pred_semantic = None
        if not inference:
            lr = self.conv_lr(lr8x)
            pred_semantic = torch.sigmoid(lr)

        return pred_semantic, lr8x, [enc2x, enc4x]


class HRBranch(nn.Module):
    """ High Resolution Branch of MODNet
    """

    def __init__(self, hr_channels, enc_channels):
        super(HRBranch, self).__init__()

        self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
        self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)

        self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
        self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)

        self.conv_hr4x = nn.Sequential(
            Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
        )

        self.conv_hr2x = nn.Sequential(
            Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
        )

        self.conv_hr = nn.Sequential(
            Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
        )

    def forward(self, img, enc2x, enc4x, lr8x, inference):
        img2x = F.interpolate(img, scale_factor=1 / 2, mode='bilinear', align_corners=False)
        img4x = F.interpolate(img, scale_factor=1 / 4, mode='bilinear', align_corners=False)

        enc2x = self.tohr_enc2x(enc2x)
        hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))

        enc4x = self.tohr_enc4x(enc4x)
        hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))

        lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
        hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))

        hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
        hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))

        pred_detail = None
        if not inference:
            hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
            hr = self.conv_hr(torch.cat((hr, img), dim=1))
            pred_detail = torch.sigmoid(hr)

        return pred_detail, hr2x


class FusionBranch(nn.Module):
    """ Fusion Branch of MODNet
    """

    def __init__(self, hr_channels, enc_channels):
        super(FusionBranch, self).__init__()
        self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)

        self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
        self.conv_f = nn.Sequential(
            Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
            Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
        )

    def forward(self, img, lr8x, hr2x):
        lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
        lr4x = self.conv_lr4x(lr4x)
        lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)

        f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
        f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
        f = self.conv_f(torch.cat((f, img), dim=1))
        pred_matte = torch.sigmoid(f)

        return pred_matte


# ------------------------------------------------------------------------------
#  MODNet
# ------------------------------------------------------------------------------

class MODNet(nn.Module):
    """ Architecture of MODNet
    """

    def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=False):
        super(MODNet, self).__init__()

        self.in_channels = in_channels
        self.hr_channels = hr_channels
        self.backbone_arch = backbone_arch
        self.backbone_pretrained = backbone_pretrained

        self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)

        self.lr_branch = LRBranch(self.backbone)
        self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
        self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                self._init_conv(m)
            elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
                self._init_norm(m)

        if self.backbone_pretrained:
            self.backbone.load_pretrained_ckpt()

    def forward(self, img, inference):
        pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
        pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
        pred_matte = self.f_branch(img, lr8x, hr2x)

        return pred_semantic, pred_detail, pred_matte

    @staticmethod
    def compute_loss(args):
        pred_semantic, pred_detail, pred_matte, image, trimap, gt_matte = args
        semantic_loss, detail_loss, matte_loss = loss_func(pred_semantic, pred_detail, pred_matte,
                                                           image, trimap, gt_matte)
        loss = semantic_loss + detail_loss + matte_loss
        return matte_loss, loss

    def freeze_norm(self):
        norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
        for m in self.modules():
            for n in norm_types:
                if isinstance(m, n):
                    m.eval()
                    continue

    def _init_conv(self, conv):
        nn.init.kaiming_uniform_(
            conv.weight, a=0, mode='fan_in', nonlinearity='relu')
        if conv.bias is not None:
            nn.init.constant_(conv.bias, 0)

    def _init_norm(self, norm):
        if norm.weight is not None:
            nn.init.constant_(norm.weight, 1)
            nn.init.constant_(norm.bias, 0)

    def _apply(self, fn):
        super(MODNet, self)._apply(fn)
        blurer._apply(fn)  # let blurer's device same as modnet
        return self