File size: 11,055 Bytes
395d300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import albumentations as A
from albumentations import DualIAATransform, to_tuple
import imgaug.augmenters as iaa
import cv2
from tqdm import tqdm
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
from sklearn.utils import shuffle
import numpy as np

class IAAAffine2(DualIAATransform):
    """Place a regular grid of points on the input and randomly move the neighbourhood of these point around
    via affine transformations.
    Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
    Args:
        p (float): probability of applying the transform. Default: 0.5.
    Targets:
        image, mask
    """

    def __init__(
        self,
        scale=(0.7, 1.3),
        translate_percent=None,
        translate_px=None,
        rotate=0.0,
        shear=(-0.1, 0.1),
        order=1,
        cval=0,
        mode="reflect",
        always_apply=False,
        p=0.5,
    ):
        super(IAAAffine2, self).__init__(always_apply, p)
        self.scale = dict(x=scale, y=scale)
        self.translate_percent = to_tuple(translate_percent, 0)
        self.translate_px = to_tuple(translate_px, 0)
        self.rotate = to_tuple(rotate)
        self.shear = dict(x=shear, y=shear)
        self.order = order
        self.cval = cval
        self.mode = mode

    @property
    def processor(self):
        return iaa.Affine(
            self.scale,
            self.translate_percent,
            self.translate_px,
            self.rotate,
            self.shear,
            self.order,
            self.cval,
            self.mode,
        )

    def get_transform_init_args_names(self):
        return ("scale", "translate_percent", "translate_px", "rotate", "shear", "order", "cval", "mode")


class IAAPerspective2(DualIAATransform):
    """Perform a random four point perspective transform of the input.
    Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
    Args:
        scale ((float, float): standard deviation of the normal distributions. These are used to sample
            the random distances of the subimage's corners from the full image's corners. Default: (0.05, 0.1).
        p (float): probability of applying the transform. Default: 0.5.
    Targets:
        image, mask
    """

    def __init__(self, scale=(0.05, 0.1), keep_size=True, always_apply=False, p=0.5,
                 order=1, cval=0, mode="replicate"):
        super(IAAPerspective2, self).__init__(always_apply, p)
        self.scale = to_tuple(scale, 1.0)
        self.keep_size = keep_size
        self.cval = cval
        self.mode = mode

    @property
    def processor(self):
        return iaa.PerspectiveTransform(self.scale, keep_size=self.keep_size, mode=self.mode, cval=self.cval)

    def get_transform_init_args_names(self):
        return ("scale", "keep_size")


def get_bg_transforms(transform_variant, out_size):
    max_size = int(out_size * 1.2)
    if transform_variant == 'train':
        transform = [
            A.SmallestMaxSize(max_size, always_apply=True, interpolation=cv2.INTER_AREA),
            A.RandomResizedCrop(out_size, out_size, scale=(0.9, 1.5), p=1, ratio=(0.9, 1.1)),
        ]
    else:
        transform = [
            A.SmallestMaxSize(out_size, always_apply=True),
            A.RandomCrop(out_size, out_size, True),
        ]
    return A.Compose(transform)


def get_fg_transforms(out_size, scale_limit=(-0.85, -0.3), transform_variant='train'):
    if transform_variant == 'train':
        transform = [
            A.LongestMaxSize(out_size),
            A.RandomScale(scale_limit=scale_limit, always_apply=True, interpolation=cv2.INTER_AREA),
            IAAAffine2(scale=(1, 1),
                       rotate=(-15, 15),
                       shear=(-0.1, 0.1), p=0.3, mode='constant'),
            IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
            A.HorizontalFlip(),
            A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT, p=0.3),
            A.GridDistortion(border_mode=cv2.BORDER_CONSTANT, p=0.3)
        ]
    elif transform_variant == 'distort_only':
        transform = [
            IAAAffine2(scale=(1, 1),
                       shear=(-0.1, 0.1), p=0.3, mode='constant'),
            IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
            A.HorizontalFlip(),
            A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT, p=0.3),
            A.GridDistortion(border_mode=cv2.BORDER_CONSTANT, p=0.3)
        ]
    else:
        transform = [
            A.LongestMaxSize(out_size),
            A.RandomScale(scale_limit=scale_limit, always_apply=True, interpolation=cv2.INTER_LINEAR)
        ]
    return A.Compose(transform)


def get_transforms(transform_variant, out_size, to_float=True):
    if transform_variant == 'distortions':
        transform = [
            IAAAffine2(scale=(1, 1.3),
                       rotate=(-20, 20),
                       shear=(-0.1, 0.1), p=1, mode='constant'),
            IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
            A.OpticalDistortion(),
            A.HorizontalFlip(),
            A.Sharpen(p=0.3),
            A.CLAHE(),
            A.GaussNoise(p=0.3),
            A.Posterize(),
            A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT),
        ]
    elif transform_variant == 'default':
        transform = [
            A.HorizontalFlip(),
            A.Rotate(20, p=0.3)
        ]
    elif transform_variant == 'identity':
        transform = [] 
    else:
        raise ValueError(f'Unexpected transform_variant {transform_variant}')
    if to_float:
        transform.append(A.ToFloat())
    return A.Compose(transform)


def get_template_transforms(transform_variant, out_size, to_float=True):
    if transform_variant == 'distortions':
        transform = [
            A.Cutout(p=0.3, max_w_size=30, max_h_size=30, num_holes=1),
            IAAAffine2(scale=(1, 1.3),
                       rotate=(-20, 20),
                       shear=(-0.1, 0.1), p=1, mode='constant'),
            IAAPerspective2(scale=(0.0, 0.06), p=0.3, mode='constant'),
            A.OpticalDistortion(),
            A.HorizontalFlip(),
            A.Sharpen(p=0.3),
            A.CLAHE(),
            A.GaussNoise(p=0.3),
            A.Posterize(),
            A.ElasticTransform(alpha=0.3, sigma=15, alpha_affine=15, border_mode=cv2.BORDER_CONSTANT),
        ]
    elif transform_variant == 'identity':
        transform = [] 
    else:
        raise ValueError(f'Unexpected transform_variant {transform_variant}')
    if to_float:
        transform.append(A.ToFloat())
    return A.Compose(transform)


def rotate_image(mat: np.ndarray, angle: float, alpha_crop: bool = False) -> np.ndarray:
    """
    Rotates an image (angle in degrees) and expands image to avoid cropping
    # https://stackoverflow.com/questions/43892506/opencv-python-rotate-image-without-cropping-sides
    """

    height, width = mat.shape[:2] # image shape has 3 dimensions
    image_center = (width/2, height/2) # getRotationMatrix2D needs coordinates in reverse order (width, height) compared to shape

    rotation_mat = cv2.getRotationMatrix2D(image_center, angle, 1.)

    # rotation calculates the cos and sin, taking absolutes of those.
    abs_cos = abs(rotation_mat[0,0]) 
    abs_sin = abs(rotation_mat[0,1])

    # find the new width and height bounds
    bound_w = int(height * abs_sin + width * abs_cos)
    bound_h = int(height * abs_cos + width * abs_sin)

    # subtract old image center (bringing image back to origo) and adding the new image center coordinates
    rotation_mat[0, 2] += bound_w/2 - image_center[0]
    rotation_mat[1, 2] += bound_h/2 - image_center[1]

    # rotate image with the new bounds and translated rotation matrix
    rotated_mat = cv2.warpAffine(mat, rotation_mat, (bound_w, bound_h))
    
    if alpha_crop and len(rotated_mat.shape) == 3 and rotated_mat.shape[-1] == 4:
        x, y, w, h = cv2.boundingRect(rotated_mat[..., -1])
        rotated_mat = rotated_mat[y: y+h, x: x+w]
    
    return rotated_mat


def recreate_image(codebook, labels, w, h):
    """Recreate the (compressed) image from the code book & labels"""
    return (codebook[labels].reshape(w, h, -1) * 255).astype(np.uint8)

def quantize_image(image: np.ndarray, n_colors: int, method='kmeans', mask=None):
    # https://scikit-learn.org/stable/auto_examples/cluster/plot_color_quantization.html
    image = np.array(image, dtype=np.float64) / 255

    if len(image.shape) == 3:
        w, h, d = tuple(image.shape)
    else:
        w, h = image.shape
        d = 1

    # assert d == 3
    image_array = image.reshape(-1, d)

    if method == 'kmeans':

        image_array_sample = None
        if mask is not None:
            ids  = np.where(mask)
            if len(ids[0]) > 10:
                bg = image[ids][::2]
                fg = image[np.where(mask == 0)]
                max_bg_num = int(fg.shape[0] * 1.5)
                if bg.shape[0] > max_bg_num:
                    bg = shuffle(bg, random_state=0, n_samples=max_bg_num)
                image_array_sample = np.concatenate((fg, bg), axis=0)
                if image_array_sample.shape[0] > 2048:
                    image_array_sample = shuffle(image_array_sample, random_state=0, n_samples=2048)
                else:
                    image_array_sample = None

        if image_array_sample is None:
            image_array_sample = shuffle(image_array, random_state=0, n_samples=2048)
        
        kmeans = KMeans(n_clusters=n_colors, n_init=10, random_state=0).fit(
            image_array_sample
        )

        labels = kmeans.predict(image_array)
        quantized  = recreate_image(kmeans.cluster_centers_, labels, w, h)
        return quantized, kmeans.cluster_centers_, labels

    else:

        codebook_random = shuffle(image_array, random_state=0, n_samples=n_colors)
        labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0)

        return [recreate_image(codebook_random, labels_random, w, h)]


def resize2height(img: np.ndarray, height: int):
    im_h, im_w = img.shape[:2]
    if im_h > height:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LINEAR
    if im_h != height:
        img = cv2.resize(img, (int(height / im_h * im_w), height), interpolation=interpolation)
    return img

if __name__ == '__main__':
    import os.path as osp

    img_path = r'tmp\megumin.png'
    save_dir = r'tmp'
    sample_num = 24

    tv = 'distortions'
    out_size = 224
    transforms = get_transforms(tv, out_size ,to_float=False)
    img = cv2.imread(img_path)
    for idx in tqdm(range(sample_num)):
        transformed = transforms(image=img)['image']
        print(transformed.shape)
        cv2.imwrite(osp.join(save_dir, str(idx)+'-transform.jpg'), transformed)
    # cv2.waitKey(0)
    pass