import spaces import torch import numpy as np from torch.nn import functional as F from torch_geometric.utils import to_dense_adj, to_dense_batch, remove_self_loops import os import json import yaml from types import SimpleNamespace def dict_to_namespace(d): return SimpleNamespace( **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()} ) class DataInfos: def __init__(self, meta_filename="data.meta.json"): self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2'] self.task_type = "gas_permeability" if os.path.exists(meta_filename): with open(meta_filename, "r") as f: meta_dict = json.load(f) else: raise FileNotFoundError(f"Meta file {meta_filename} not found.") self.active_atoms = meta_dict["active_atoms"] self.max_n_nodes = meta_dict["max_node"] self.original_max_n_nodes = meta_dict["max_node"] self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"]) self.edge_types = torch.Tensor(meta_dict["bond_type_dist"]) self.transition_E = torch.Tensor(meta_dict["transition_E"]) self.atom_decoder = meta_dict["active_atoms"] node_types = torch.Tensor(meta_dict["atom_type_dist"]) active_index = (node_types > 0).nonzero().squeeze() self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index] self.nodes_dist = DistributionNodes(self.n_nodes) self.active_index = active_index val_len = 3 * self.original_max_n_nodes - 2 meta_val = torch.Tensor(meta_dict["valencies"]) self.valency_distribution = torch.zeros(val_len) val_len = min(val_len, len(meta_val)) self.valency_distribution[:val_len] = meta_val[:val_len] ## for all self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} # self.input_dims = {"X": 11, "E": 5, "y": 5} # self.output_dims = {"X": 11, "E": 5, "y": 5} def load_config(config_path, data_meta_info_path): if not os.path.exists(config_path): raise FileNotFoundError(f"Configuration file not found: {config_path}") if not os.path.exists(data_meta_info_path): raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}") with open(config_path, "r") as file: cfg_dict = yaml.safe_load(file) cfg = dict_to_namespace(cfg_dict) data_info = DataInfos(data_meta_info_path) return cfg, data_info #### graph utils class PlaceHolder: def __init__(self, X, E, y): self.X = X self.E = E self.y = y def type_as(self, x: torch.Tensor, categorical: bool = False): """Changes the device and dtype of X, E, y.""" self.X = self.X.type_as(x) self.E = self.E.type_as(x) if categorical: self.y = self.y.type_as(x) return self def mask(self, node_mask, collapse=False): x_mask = node_mask.unsqueeze(-1) # bs, n, 1 e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1 e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1 if collapse: self.X = torch.argmax(self.X, dim=-1) self.E = torch.argmax(self.E, dim=-1) self.X[node_mask == 0] = -1 self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1 else: self.X = self.X * x_mask self.E = self.E * e_mask1 * e_mask2 assert torch.allclose(self.E, torch.transpose(self.E, 1, 2)) return self def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None): X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes) # node_mask = node_mask.float() edge_index, edge_attr = remove_self_loops(edge_index, edge_attr) if max_num_nodes is None: max_num_nodes = X.size(1) E = to_dense_adj( edge_index=edge_index, batch=batch, edge_attr=edge_attr, max_num_nodes=max_num_nodes, ) E = encode_no_edge(E) return PlaceHolder(X=X, E=E, y=None), node_mask def encode_no_edge(E): assert len(E.shape) == 4 if E.shape[-1] == 0: return E no_edge = torch.sum(E, dim=3) == 0 first_elt = E[:, :, :, 0] first_elt[no_edge] = 1 E[:, :, :, 0] = first_elt diag = ( torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1) ) E[diag] = 0 return E #### diffusion utils class DistributionNodes: def __init__(self, histogram): """Compute the distribution of the number of nodes in the dataset, and sample from this distribution. historgram: dict. The keys are num_nodes, the values are counts """ if type(histogram) == dict: max_n_nodes = max(histogram.keys()) prob = torch.zeros(max_n_nodes + 1) for num_nodes, count in histogram.items(): prob[num_nodes] = count else: prob = histogram self.prob = prob / prob.sum() self.m = torch.distributions.Categorical(prob) def sample_n(self, n_samples, device): idx = self.m.sample((n_samples,)) return idx.to(device) def log_prob(self, batch_n_nodes): assert len(batch_n_nodes.size()) == 1 p = self.prob.to(batch_n_nodes.device) probas = p[batch_n_nodes] log_p = torch.log(probas + 1e-30) return log_p class PredefinedNoiseScheduleDiscrete(torch.nn.Module): def __init__(self, noise_schedule, timesteps): super(PredefinedNoiseScheduleDiscrete, self).__init__() self.timesteps = timesteps betas = cosine_beta_schedule_discrete(timesteps) self.register_buffer("betas", torch.from_numpy(betas).float()) # 0.9999 self.alphas = 1 - torch.clamp(self.betas, min=0, max=1) log_alpha = torch.log(self.alphas) log_alpha_bar = torch.cumsum(log_alpha, dim=0) self.alphas_bar = torch.exp(log_alpha_bar) def forward(self, t_normalized=None, t_int=None): assert int(t_normalized is None) + int(t_int is None) == 1 if t_int is None: t_int = torch.round(t_normalized * self.timesteps) self.betas = self.betas.type_as(t_int) return self.betas[t_int.long()] def get_alpha_bar(self, t_normalized=None, t_int=None): assert int(t_normalized is None) + int(t_int is None) == 1 if t_int is None: t_int = torch.round(t_normalized * self.timesteps) self.alphas_bar = self.alphas_bar.type_as(t_int) return self.alphas_bar[t_int.long()] class DiscreteUniformTransition: def __init__(self, x_classes: int, e_classes: int, y_classes: int): self.X_classes = x_classes self.E_classes = e_classes self.y_classes = y_classes self.u_x = torch.ones(1, self.X_classes, self.X_classes) if self.X_classes > 0: self.u_x = self.u_x / self.X_classes self.u_e = torch.ones(1, self.E_classes, self.E_classes) if self.E_classes > 0: self.u_e = self.u_e / self.E_classes self.u_y = torch.ones(1, self.y_classes, self.y_classes) if self.y_classes > 0: self.u_y = self.u_y / self.y_classes def get_Qt(self, beta_t, device, X=None, flatten_e=None): """Returns one-step transition matrices for X and E, from step t - 1 to step t. Qt = (1 - beta_t) * I + beta_t / K beta_t: (bs) noise level between 0 and 1 returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy). """ beta_t = beta_t.unsqueeze(1) beta_t = beta_t.to(device) self.u_x = self.u_x.to(device) self.u_e = self.u_e.to(device) self.u_y = self.u_y.to(device) q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye( self.X_classes, device=device ).unsqueeze(0) q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye( self.E_classes, device=device ).unsqueeze(0) q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye( self.y_classes, device=device ).unsqueeze(0) return PlaceHolder(X=q_x, E=q_e, y=q_y) def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None): """Returns t-step transition matrices for X and E, from step 0 to step t. Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t. returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy). """ alpha_bar_t = alpha_bar_t.unsqueeze(1) alpha_bar_t = alpha_bar_t.to(device) self.u_x = self.u_x.to(device) self.u_e = self.u_e.to(device) self.u_y = self.u_y.to(device) q_x = ( alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_x ) q_e = ( alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_e ) q_y = ( alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_y ) return PlaceHolder(X=q_x, E=q_e, y=q_y) class MarginalTransition: def __init__( self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes ): self.X_classes = len(x_marginals) self.E_classes = len(e_marginals) self.y_classes = y_classes self.x_marginals = x_marginals # Dx self.e_marginals = e_marginals # Dx, De self.xe_conditions = xe_conditions # print('e_marginals.dtype', e_marginals.dtype) # print('x_marginals.dtype', x_marginals.dtype) # print('xe_conditions.dtype', xe_conditions.dtype) self.u_x = ( x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0) ) # 1, Dx, Dx self.u_e = ( e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0) ) # 1, De, De self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx self.u = self.get_union_transition( self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes ) # 1, Dx + n*De, Dx + n*De def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes): u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de) u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de) u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx) u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de) u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de) u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de) return u def index_edge_margin(self, X, q_e, n_bond=5): # q_e: (bs, dx, de) --> (bs, n, de) bs, n, n_atom = X.shape node_indices = X.argmax(-1) # (bs, n) ind = node_indices[:, :, None].expand(bs, n, n_bond) q_e = torch.gather(q_e, 1, ind) return q_e def get_Qt(self, beta_t, device): """Returns one-step transition matrices for X and E, from step t - 1 to step t. Qt = (1 - beta_t) * I + beta_t / K beta_t: (bs) returns: q (bs, d0, d0) """ bs = beta_t.size(0) d0 = self.u.size(-1) self.u = self.u.to(device) u = self.u.expand(bs, d0, d0) beta_t = beta_t.to(device) beta_t = beta_t.view(bs, 1, 1) q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) return PlaceHolder(X=q, E=None, y=None) def get_Qt_bar(self, alpha_bar_t, device): """Returns t-step transition matrices for X and E, from step 0 to step t. Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t. returns: q (bs, d0, d0) """ bs = alpha_bar_t.size(0) d0 = self.u.size(-1) alpha_bar_t = alpha_bar_t.to(device) alpha_bar_t = alpha_bar_t.view(bs, 1, 1) self.u = self.u.to(device) q = ( alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) + (1 - alpha_bar_t) * self.u ) return PlaceHolder(X=q, E=None, y=None) def sum_except_batch(x): return x.reshape(x.size(0), -1).sum(dim=-1) def assert_correctly_masked(variable, node_mask): assert ( variable * (1 - node_mask.long()) ).abs().max().item() < 1e-4, "Variables not masked properly." def cosine_beta_schedule_discrete(timesteps, s=0.008): """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ.""" steps = timesteps + 2 x = np.linspace(0, steps, steps) alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2 alphas_cumprod = alphas_cumprod / alphas_cumprod[0] alphas = alphas_cumprod[1:] / alphas_cumprod[:-1] betas = 1 - alphas return betas.squeeze() def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True): """Sample features from multinomial distribution with given probabilities (probX, probE, proby) :param probX: bs, n, dx_out node features :param probE: bs, n, n, de_out edge features :param proby: bs, dy_out global features. """ bs, n, _ = probX.shape # Noise X # The masked rows should define probability distributions as well probX[~node_mask] = 1 / probX.shape[-1] # Flatten the probability tensor to sample with multinomial probX = probX.reshape(bs * n, -1) # (bs * n, dx_out) # Sample X probX = probX.clamp_min(1e-5) probX = probX / probX.sum(dim=-1, keepdim=True) X_t = probX.multinomial(1) # (bs * n, 1) X_t = X_t.reshape(bs, n) # (bs, n) # Noise E # The masked rows should define probability distributions as well inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2)) diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1) probE[inverse_edge_mask] = 1 / probE.shape[-1] probE[diag_mask.bool()] = 1 / probE.shape[-1] probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out) probE = probE.clamp_min(1e-5) probE = probE / probE.sum(dim=-1, keepdim=True) # Sample E E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n) E_t = torch.triu(E_t, diagonal=1) E_t = E_t + torch.transpose(E_t, 1, 2) return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t)) def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask): # Add a small value everywhere to avoid nans pred_X = pred_X.clamp_min(1e-5) pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True) pred_E = pred_E.clamp_min(1e-5) pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True) # Set masked rows to arbitrary distributions, so it doesn't contribute to loss row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device) row_E = torch.zeros( true_E.size(-1), dtype=true_E.dtype, device=true_E.device ).clamp_min(1e-5) row_E[0] = 1.0 diag_mask = ~torch.eye( node_mask.size(1), device=node_mask.device, dtype=torch.bool ).unsqueeze(0) true_X[~node_mask] = row_X true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E pred_X[~node_mask] = row_X.type_as(pred_X) pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = ( row_E.type_as(pred_E) ) return true_X, true_E, pred_X, pred_E def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim): bs, n, d = X.shape Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d) left_term = X_t @ Qt_X_T # (bs, N, d) right_term = X @ Qsb.X # (bs, N, d) numerator = left_term * right_term # (bs, N, d) denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d) denominator = denominator * X_t num_X = numerator[:, :, :X_dim] num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1) deno_X = denominator[:, :, :X_dim] deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1) denominator = denominator.unsqueeze(-1) # (bs, N, 1) deno_X = deno_X.sum(dim=-1, keepdim=True) deno_E = deno_E.sum(dim=-1, keepdim=True) deno_X[deno_X == 0.0] = 1 deno_E[deno_E == 0.0] = 1 prob_X = num_X / deno_X prob_E = num_E / deno_E prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True) prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True) return PlaceHolder(X=prob_X, E=prob_E, y=None) def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb): """M: X or E Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0 X_t: bs, n, dt or bs, n, n, dt Qt: bs, d_t-1, dt Qsb: bs, d0, d_t-1 Qtb: bs, d0, dt. """ Qt_T = Qt.transpose(-1, -2) # bs, N, dt assert Qt.dim() == 3 left_term = X_t @ Qt_T # bs, N, d_t-1 right_term = predX_0 @ Qsb numerator = left_term * right_term # bs, N, d_t-1 denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N denominator = denominator.transpose(-1, -2) # bs, N, d0 return numerator / denominator.clamp_min(1e-5) def reverse_tensor(x): return x[torch.arange(x.size(0) - 1, -1, -1)] def sample_discrete_feature_noise(limit_dist, node_mask): """Sample from the limit distribution of the diffusion process""" bs, n_max = node_mask.shape x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1) x_limit = x_limit.to(node_mask.device) U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max) U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit) e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1) U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max) U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit) U_X = U_X.to(node_mask.device) U_E = U_E.to(node_mask.device) # Get upper triangular part of edge noise, without main diagonal upper_triangular_mask = torch.zeros_like(U_E) indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1) upper_triangular_mask[:, indices[0], indices[1], :] = 1 U_E = U_E * upper_triangular_mask U_E = U_E + torch.transpose(U_E, 1, 2) assert (U_E == torch.transpose(U_E, 1, 2)).all() return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask) def index_QE(X, q_e, n_bond=5): bs, n, n_atom = X.shape node_indices = X.argmax(-1) # (bs, n) exp_ind1 = node_indices[:, :, None, None, None].expand( bs, n, n_atom, n_bond, n_bond ) exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond) q_e = torch.gather(q_e, 1, exp_ind1) q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond) node_mask = X.sum(-1) != 0 no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :] q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e) return q_e